

TSP Can Be the Building Blocks for CMMI
If you are just beginning a Capability Maturity Model Integration
initiative, the Team Software Process can help you to bootstrap
your process definition activities and train your engineers to be
capable and productive at defining the processes they use.
by Alan S. Koch

Microsoft’s IT Organization Uses PSP/TSP to Achieve
Engineering Excellence
The cost to train a Microsoft development team in the Team
Software Process was more than paid for after the very first
project the newly organized team ran.
by Carol A. Grojean

Experiences With the TSP Technology Insertion
These authors provide a look at the rewards and challenges of
transitioning to the Team Software Process from two different
perspectives: the TSP coach and the development manager
supervising the TSP projects.
by Ray Trechter and Iraj Hirmanpour

Personal Earned Value:Why Projects Using the Team
Software Process Consistently Meet Schedule
Commitments
These authors discuss why managing earned value at the
team member level can produce a 10-times reduction in schedule
variance by properly balancing team workload using personal data.
by David Tuma and David R. Webb

A TSP Software Maintenance Life Cycle
Here is how a software maintenance project adapted the Team
Software Process/Personal Software Process to develop a new
proxy for estimating maintenance activity and creating a TSP
software maintenance life cycle.
by Chris A. Rickets

Why Big Software Projects Fail:The 12 Key Questions
This author addresses the principal questions concerning why
large software projects are hard to manage, the kinds of
management systems needed, and the actions required to
implement such systems.
by Watts S. Humphrey

TTeam eam SoftwarSoftwaree PrProcessocess

2 CROSSTALK The Journal of Defense Software Engineering March 2005

4

8

13

17

22

25
Open Open FForumorum

3

12
24

30

31

DeparDepar tmentstments

From the Sponsor
From the Publisher

Coming Events

Web Sites

SSTC 2005 Conference

BackTalk

CrossTalk
OC-ALC/ MAS

CO-SPONSOR

OO-ALC/MAS
CO-SPONSOR

WR-ALC/MAS
CO-SPONSOR

PUBLISHER

ASSOCIATE PUBLISHER

MANAGING EDITOR

ASSOCIATE EDITOR

ARTICLE COORDINATOR

CREATIVE SERVICES
COORDINATOR

PHONE

FAX

E-MAIL

CROSSTALK ONLINE

Kevin Stamey

Randy Hill

Tom Christian

Tracy Stauder

Elizabeth Starrett

Pamela Palmer

Chelene Fortier-Lozancich

Nicole Kentta

Janna Kay Jensen

(801) 775-5555

(801) 777-8069

crosstalk.staff@hill.af.mil

www.stsc.hill.af.mil/
crosstalk

Oklahoma City-Air Logistics Center (OC-ALC),
Ogden-Air Logistics Center (OO-ALC), and Warner
Robins-Air Logistics Center (WR-ALC) MAS
Software Divisions are the official co-sponsors of
CROSSTALK, The Journal of Defense Software
Engineering. The MAS Software Divisions and the
Software Technology Support Center (STSC) are
working jointly to encourage the engineering develop-
ment of software to improve the reliability, sustainabil-
ity, and responsiveness of our warfighting capability.

The STSC is the publisher of CrossTalk, provid-
ing both editorial oversight and technical review of the
journal.

Subscriptions: Send correspondence concerning
subscriptions and changes of address to the following
address.You may e-mail us or use the form on p. 29.

OO ALC/MASE
6022 Fir AVE
BLDG 1238
Hill AFB, UT 84056-5820

Article Submissions:We welcome articles of interest
to the defense software community.Articles must be
approved by the CROSSTALK editorial board prior to
publication. Please follow the Author Guidelines, avail-
able at <www.stsc.hill.af.mil/crosstalk/xtlkguid.pdf>.
CROSSTALK does not pay for submissions. Articles
published in CROSSTALK remain the property of the
authors and may be submitted to other publications.

Reprints: Permission to reprint or post articles must
be requested from the author or the copyright hold-
er and coordinated with CROSSTALK.

Trademarks and Endorsements:This Department of
Defense (DoD) journal is an authorized publication
for members of the DoD. Contents of CROSSTALK
are not necessarily the official views of, or endorsed
by, the U.S. government, the DoD, or the STSC. All
product names referenced in this issue are trademarks
of their companies.

Coming Events: Please submit conferences, seminars,
symposiums, etc. that are of interest to our readers at
least 90 days before registration. Mail or e-mail
announcements to us.

CrossTalk Online Services: See <www.stsc.hill.af.mil/
crosstalk>, call (801) 777-7026, or e-mail <stsc.web
master@hill.af.mil>.

Back Issues Available: Please phone or e-mail us to
see if back issues are available free of charge.

Cover Design by
Kent Bingham.

ON THE COVER

From the Sponsor

While Personal Software ProcessSM (PSPSM) has proven benefits, it has nothing to offer
if employees are not using it. The Ogden-Air Logistics Center faced this problem

in 1998 when developing the TaskView software, which allows the user to view quickly
an Air Tasking Order from low-level detail to high-level overview. More than 20 individ-
uals in our software engineering division (MAS) had received PSP training, but six months
after the class only one person was using it. As a result, MAS and TaskView became a test
site for the Software Engineering Institute’s (SEISM) Team Software ProcessSM (TSPSM), and

Watts Humphrey, a SEI Fellow who led development of the TSP and PSP, worked directly with
TaskView on this SEI pilot project.

Over the next four years, the team internalized the TSP/PSP concepts and delivered several
remarkably successful releases of the TaskView product. As instructed by Humphrey, the TaskView
team organized, used the scripts and templates, held weekly meetings, and updated its spreadsheets.
Each team member also employed PSP processes, checklists, and spreadsheets personally. They also
developed a dashboard application to collect semi-automatically PSP data. As a result, they reaped the
TSP/PSP rewards: low defects, greater flexibility, more accurate estimates, team unity, quality focus,
delivered on-time and within budget, and delighted the customer.

Of course, this wasn’t an airtight success. There were misunderstandings in recording data,
some PSP training was incomplete, PSP tailoring was needed, and other issues just like any project.
In other words, TSP/PSP wasn’t a quick fix. It was, however, the key to creating a very disciplined
and self-guiding team. The success of the TaskView team led to not only the adoption of TSP in
other mission planning and Command, Control, Communications and Intelligence projects in
MAS, but helped guide many high maturity policy and process improvements in the division that
are still in use today.

Team Software Process Brings
Project Success Over Time

Randy B. Hill
Ogden Air Logistics Center, Co-Sponsor

March 2005 www.stsc.hill.af.mil 3

From the Publisher

The Team Software ProcessSM (TSPSM) has proven successful in helping software proj-
ects and organizations adequately plan their efforts, track against those plans, and take

action in a timely manner when things don’t go according to plan. I’m not just parroting
the information I have read in this month’s articles: I used TSP for two years before com-
ing to work for CrossTalk. While I have seen its great advantages, I have also experi-
enced its challenges. This month’s issue contains articles that discuss both.

Alan S. Koch highlights the similarities between TSP practices and the practices advo-
cated in the Capability Maturity Model® (CMM®) and CMM IntegrationSM (CMMI®), and how imple-
menting TSP can actually facilitate your CMMI process improvement effort. Carol A. Grojean gives
several examples of how TSP improved her development efforts and provides data to back her
claims. Ray Trechter and Iraj Hirmanpour share some of the challenges that can come with TSP
success. David Webb and David Tuma explain in their article that TSP itself does not cause success
– the practices it contains do: TSP has a framework that guides developers to these practices.

TSP is also evolving to meet the needs of new applications and processes. Chris A. Rickets’
article discusses how his command adapted the published TSP process to meet the needs of its
maintenance projects. In conclusion, Watts Humphrey presents an informative overview of why
projects truly need TSP and insights into how it works. We received more good articles for this
issue than we could possibly fit into it, so look for more TSP articles in later CrossTalk issues.

TSP Has Multiple Uses

Elizabeth Starrett
Associate Publisher

Team Software Process

4 CROSSTALK The Journal of Defense Software Engineering March 2005

Your organization has a mandate to
achieve Capability Maturity Model®

(CMM®) Integration (CMMI®) Level 3. It
is going to be a long road. There are
processes to define, documents to write,
people to train, and evidence to collect.
With so much to do and so many people
involved, why would you even consider
the Team Software ProcessSM (TSPSM)?
Why add something else to your plate
when it is already overflowing with work?
Most organizations adopt the TSP to
achieve significant improvements in prod-
uct quality, to reduce development time,
and to get more accurate project esti-
mates. Too many organizations believe
they must choose between those benefits

and the recognized organizational maturi-
ty level or capability level rating provided
by the CMMI.

In this article, I will discuss how the
TSP can potentially reduce the time and
effort required to achieve your CMMI
goals, eliminating the need to choose
between two sets of laudable objectives.

If you are just starting out on a CMMI
initiative, the TSP can help you to boot-
strap your process definition activities.
TSP does this by providing starting
points for many of your new processes,
as well as training your engineers to be
capable and productive at defining the
processes they use. Naturally, the more
progress you have already made in
advancing the CMMI, the less this boot-
strapping will help. But even if you are
well on your way to your CMMI goals, the
TSP can make the road smoother in these
ways, for example:

• The Personal Software ProcessSM

(PSPSM) training is a potent tool for
overcoming the natural resistance that
engineers often display toward process
changes, and the TSP launch and
weekly process can diffuse any
remaining reservations they might
have. By the time the TSP team is
working together, most resistance has
been worked through, so they become
proponents of process change rather
than resistors. Instead of having to
push process improvements on these
software engineers, you may find that
they pull eagerly for them.

• Your TSP projects will yield cost sav-
ings, productivity improvements, and
quality advances that will more than
pay for the costs of introduction. In
fact, even with good CMMI processes
in place, your TSP projects will accel-
erate the rate of return on your entire
process improvement initiative, allow-
ing you to either accelerate your
process work or realize the returns on
it earlier.

TSP and the CMMI
The TSP has the same roots as the CMMI,
being based on the Software Engineering
Institute’s (SEISM) early research that pro-
duced the CMM for Software (SW-CMM).
As such, it aligns well with the CMMI and
partly or fully satisfies the CMMI’s goals.
Figure 1, which was published by the SEI
in 2002, shows the degree to which the
TSP addresses the key practices of the
SW-CMM.

Figure 1 shows that the majority of
the key practices in the CMM are at least
partially addressed by the TSP. However,
how are they addressed in the CMMI?
The SEI is expected to publish a similar
analysis of the TSP versus the CMMI
soon, and because of the similarities
between the models, we should expect
similar results. In a presentation at the
2003 Software Engineering Process

TSP Can Be the Building Blocks for CMMI
Alan S. Koch

ASK Process, Inc.

Your organization has a mandate to achieve Capability Maturity Model ® Integration (CMMI®) Level 3. Why would you
even consider adding the Team Software Process SM (TSP SM) to your plate when it is already overflowing? In this article, I will
discuss how TSP – far from adding work to a CMMI initiative – can potentially reduce the time and effort that will be
required to achieve your goals. Simultaneously, TSP will engage your engineers in disciplined processes, giving them an appre-
ciation for good processes along with the desire to adopt improved processes in every area of the organization.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Level 2 Level 3 Level 4 Level 5

CMM by Level - Project Practices

Not Applicable

Not Addressed

Partially Addressed

Fully Addressed

K
e

y
P

ra
c
ti

c
e

s

Figure 1: TSP Versus CMM [1]

Figure Legend
Not Applicable: The content of the key practice does not apply in the scope of the TSP (key practices that
deal with organizational activities are not applicable to the TSP).
Not Addressed: The TSP does not address any of the content of the key practice.
Partially Addressed: The TSP covers part of the content of the key practice.
Fully Addressed: The TSP fully covers the content of the key practice.

® Capability Maturity Model, CMM, and CMMI are regis-
tered in the U.S. Patent and Trademark Office by
Carnegie Mellon University.

SM CMM Integration, Team Software Process, Personal
Software Process, TSP, PSP, and SEI are service marks of
Carnegie Mellon University.

TSP Can Be the Building Blocks for CMMI

March 2005 www.stsc.hill.af.mil 5

Group conference [2], the SEI reported
these preliminary findings about the spe-
cific practices (SP) and generic practices
(GP) of the CMMI:
• Project Management SPs: Most

fully or largely implemented.
• Process Management SPs: Majority

partially or largely implemented.
• Engineering SPs: Majority fully or

largely implemented.
• Support SPs: No consistent pattern

as yet.
• Generic Practices: No policies in the

TSP, but most other GPs at all capa-
bility levels are either taught in PSP
training or practiced by TSP teams, or
both.

What Is the PSP and TSP?
How do PSP and TSP address these
CMMI goals? They do so through rigor-
ous training followed by establishing a
team environment that encourages the
trained engineers to use in their day-to-
day work what they learned in the training.

PSP
The first step in a TSP initiative is to train
all team members who can write pro-
grams in PSP. The PSP is more than just
training; it is a boot camp consisting of
about 40 hours of classroom instruction,
10 programming assignments, and three
data-analysis exercises, requiring a total of
about 150 hours for the average program-
mer to complete.

The result of the PSP boot camp is
that the programmers do not just learn
about good processes, they actually
improve their own processes, measure the
effects of those process changes, quantify
the benefits they have experienced, and
set goals for further improvements. The
PSP achieves these results by leading stu-
dents through three steps.
1. In PSP0, they lay a simple foundation

for the learning to come:
• Following simple process scripts.
• Collecting three basic measures of

their work (time spent, size of
products produced, and defects
corrected).

• Performing a simple post-project
analysis.

2. In PSP1, they begin to build the capa-
bility to plan and manage their own
work:
• Following a defined project plan-

ning process.
• Using their own prior data to make

increasingly more accurate esti-
mates for each programming
assignment.

• Planning their work at a level of

detail that allows them to track and
manage their progress.

3. In PSP2, they focus on achieving sig-
nificant quality improvements:
• Using their prior data to plan for

incremental improvements in the
quality of their programs.

• Removing defects early using per-
sonal review techniques guided by
their own prior defect performance.

• Identifying and capitalizing on
defect prevention opportunities in
their program design and imple-
mentation methods.

Those who complete the PSP boot
camp emerge with the knowledge and
skills to make accurate plans, work to
those plans, and produce superior quality
products.

TSP
The TSP then provides the project frame-
work in which programmers can carry
these classroom skills back to the work-
place and use them to transform their
team’s performance. Although the TSP is
not primarily about training, it does include
training for certain players:
• The TSP Executive Strategy Session

(which is usually held before the engi-
neers receive PSP training) provides
senior managers with the opportunity
to identify key software development-
related issues, determine how the
PSP/TSP will address those issues,
and outline a strategy for making sig-
nificant progress on those issues in a
timely and cost-effective way.

• Managing TSP Teams training provides
lower-level managers with the tools

and methods for making the most of
their TSP teams’ ability to estimate
accurately, plan appropriately, and self-
manage.

• Introduction to Personal Processes allows
the non-programmers on the TSP
teams to learn about the same topics
that the programmers learned in the
PSP boot camp, though without the
intensive work.
With all these pieces in place, the team

is ready for the key activity of the TSP:
the project launch. This is a four-day
workshop in which the TSP team mem-
bers estimate and plan their project, utiliz-
ing goals, objectives, requirements and
constraints from senior management and
clients, along with their data on their own
performance on prior projects. The
launch culminates in a presentation by the
TSP team of the project plans to senior
management and client, and, often, nego-
tiation of goals and requirements in light
of constraints and expected performance.
The final result is a project plan that is
aggressive yet achievable, and is agreed to
by all stakeholders.

After the launch, the TSP also pro-
vides the team with processes and tools
for regular progress monitoring, identify-
ing and acting on corrective actions, and
reporting status up the management
chain. For projects that take longer than a
few months, TSP relaunches provide a
basis for incremental project planning and
regular realignment of plans with project
progress.

PSP and TSP Costs
As can be seen from the descriptions of
PSP and TSP, the largest cost component
of introducing TSP in an organization is
the time the engineers spend in training
and project launches. Each engineer
spends three to four weeks in PSP train-
ing (usually spread over two to three
months), and all project participants
spend nearly a week in each project
launch.

These costs are embraced with the
expectation that the time invested will be
returned at the end of the first project as
the system testing time shrinks due to the
improved quality of the system produced
by the TSP-trained team.

TSP Need Not Be Additional
Work
How can I say that the TSP need not be addi-
tional work when I just discussed the
amount of time and effort required to
introduce it? That is work that an organi-
zation certainly would not be engaged in if

“The TSP has the same
roots as the CMMI, being
based on the Software
Engineering Institute’s
early research that

produced the CMM for
Software. As such, it
aligns well with the
CMMI and partly or

fully satisfies the
CMMI’s goals.”

Team Software Process

6 CROSSTALK The Journal of Defense Software Engineering March 2005

it did the CMMI alone! This is true. But
the point of this discussion is that by
investing in the TSP, you can make sub-
stantial reductions in the time and effort for
the overall CMMI effort.

This is suggested in reports published
in CrossTalk about CMM implemen-
tation at the AV-8B Joint System Support
Activity (JSSA), at China Lake, Calif. In
September 2002 [3], JSSA reported
achieving CMM Level 2 in a relatively
quick 14 months by adding the TSP to its
strategy. Then, in January 2004, JSSA
made a follow-up report about moving
from CMM Level 2 to Level 4 in only 16
months (as opposed to the normal 50
months), crediting the TSP with their
almost unheard-of pace. JSSA’s experi-
ence shows that you can capitalize on the
TSP’s proven framework for process
improvement to speed your CMMI initia-
tive along.

How can this be? As discussed in the
earlier analysis, the TSP addresses many of
the same subjects as the CMMI, but it does
so from the opposite perspective. Where
the CMMI takes an organizational perspec-
tive, the TSP comes at these topics from
the perspective of the individual engineers
and the teams in which they operate. This
perspective has two main advantages.

First, the TSP builds understanding
and acceptance of process discipline from
the grass roots up. The PSP (as the first
step of a TSP initiative) builds under-
standing of the important principles in
the individual engineers. The PSP boot
camp for engineers not only teaches these
important principles, but it provides the
setting in which each engineer can try
them out and prove their worth based on
personal experience and data. The TSP
then shows the engineers how to apply
those same principles on real projects in a
team setting.

The second main advantage is that the
TSP works in the small. Anyone who has
been involved in organizational change
knows of the difficulty in changing the
way that people work. Even if they are
not hostile to the change, most people will
be reticent to abandon the tried-and-true
for the unknown. By focusing on one
team at a time (and teams of PSP-trained
individuals at that), the TSP mitigates
many of the difficulties inherent in orga-
nizational change.

Taken together, these two advantages
give the TSP the potential to accelerate
the organization’s process improvement
effort not by initiating yet another effort,
but by including the TSP as a strategic
part of the larger CMMI improvement
initiative.

Get Engineers Involved
at the Beginning
The CMMI by its nature tends to not
affect many of the engineers in the early
stages of an improvement effort. This is
because the first process areas (PA) the
organization works on at Level 2 are gen-
erally focused on management rather than
engineering. The Project Planning, Proj-
ect Monitoring and Control, Supplier
Agreement Management, and Measure-
ment and Analysis PAs tend to deal with
topics that only marginally affect engi-
neers. Even the Requirements Manage-
ment PA (as opposed to the Requirements
Development PA) is more about manage-
ment issues than technical ones.

The unfortunate result of this man-
agement focus at Level 2 is that the engi-
neers tend not to be engaged in the effort,
and either feel that they are being left out
or that they are lucky to avoid involve-
ment. Of course, this situation changes
dramatically when the organization begins
focusing on Level 3 and its engineering-
specific PAs such as Requirements
Development, Technical Solution,
Product Integration, Verification, and
Validation.

By making the TSP an integral part of
your CMMI improvement effort, you
assure your software engineers are facile
with topics that are traditionally the terri-
tory of managers, and the focus at CMMI
Level 2 (measurement and analysis, proj-
ect planning, and project monitoring and
control), while building grassroots accept-
ance of process discipline and establishing
good processes in each team.

In the following three sections, I will
look specifically at the PAs that are the pri-
mary focus of the TSP. They are measure-
ment and analysis (MA), project planning
(PP), project monitoring and control

(PMC) at Level 2, and verification (Ver) at
Level 3. Because of the TSP’s primary
focus on these PAs, TSP teams can play a
critical role in working out and pilot-test-
ing processes for them.

Measurement and Analysis
PSP training starts out by showing the
engineer how to collect three primary
measures: time, size, and defects. It focus-
es on these three (as the engineers soon
learn) because they are critical to achieving
the PSP’s goals of accurate planning and
quality management. As the engineers go
through the training, they are encouraged
to analyze their individual data to under-
stand how it illuminates their perform-
ance, and to use it as the basis for any
process improvements.

The TSP builds on this basic under-
standing of a few measures by prompting
each team to identify the metrics they will
need based on the goals of the project,
then to collect and analyze those metrics
regularly. So the TSP implements MA at
the individual project level, starting with
goals and objectives, identifying metrics to
support them, and collecting and using
them throughout the project.

The metrics practices the engineers
learn in the PSP and TSP have the poten-
tial to form the basis for the organization’s
MA [measurement and analysis] processes
and procedures. In addition, as these are
developed, TSP teams will provide a per-
fect infrastructure in which to pilot test
them. Since the TSP team members will
understand metrics and how to collect and
use them, they will provide the feedback
you require to evaluate the effectiveness of
those candidate processes and procedures.

If you have already established your
organization’s MA processes and proce-
dures, then your TSP teams will use them
just as any other project team does. The
only difference is likely to be the enthusi-
asm with which they embrace metrics and
the constructive criticism they will provide
to help you with improving your MA pro-
cedures and standards.

Project Planning and Control
After instituting the collection of basic
metrics, the PSP teaches engineers to use
their own data to plan their individual
work. They analyze their assignments in
light of the projects they have undertaken
to date, and use their own data to make
reasoned and achievable plans for com-
pleting it. They then learn to compare
their actual performance against those
plans so they can improve their future
plans, in addition to seeking ways to
improve their processes.

“The metrics
practices the engineers
learn in the PSP and

TSP have the potential
to form the basis

for the organization’s
MA [measurement and

analysis] processes
and procedures.”

TSP Can Be the Building Blocks for CMMI

March 2005 www.stsc.hill.af.mil 7

The TSP harnesses these skills to lead
the engineers through estimating and
planning the work for the entire team.
After each team member is assigned spe-
cific work items, he or she uses personal
data to produce a detailed individual work
plan, and those plans are rolled together
and balanced to produce the team’s final
project plan. Then every week, the team
collects and analyzes the data on its actu-
al performance and if deviations from
their plan call for it, they identify, imple-
ment, and track corrective actions.

The practices your engineers will learn
in the PSP and TSP can form a solid
foundation for your organization’s PP and
PMC processes and procedures. Your
engineers will be able to tell you how well
those practices work in your organization
as well as providing ideas for ways to fine-
tune them to their specific needs. Then, as
you document your organizational PP and
PMC processes and procedures, they will
easily be able to incorporate them into
their ways of working and give you feed-
back on how well they work. With the
PSP and TSP as a foundation, establishing
your organization’s PP and PMC process-
es should be relatively easy and fast.

If you have already established your
organization’s PP and PMC processes and
procedures, then your TSP-trained engi-
neers will use them as the basis for their
own planning and tracking activities. But
because of the team’s deepening under-
standing of the mechanisms for planning
and tracking projects, they will be a regu-
lar source of suggestions for improving
your organizational PP and PMC stan-
dards to better fit the organization’s
needs.

Verification
The other major focus of the PSP and
TSP is on quality management. The PSP
teaches the engineers how to track their
defects, and then use that information
along with good review processes to do an
effective job of personal design and code
reviews. The TSP adds peer reviews, giv-
ing the team members the tools and meth-
ods they need to remove the vast majority
of defects from their programs before they
begin testing, thus improving product
quality and reducing system test time.

All of the basic processes and proce-
dures that you will need for the Ver PA are
embodied in the TSP’s review methods.
And, as with the PAs discussed so far, your
TSP teams will be ready to pilot test your
organization’s Ver processes and procedures
after they have been defined. And again, if
you have already defined your organization-
al Ver processes and procedures, then your

TSP teams will embrace them and provide
improvement ideas for them.

Defining Your Other Processes
In addition to the four PAs discussed,
your TSP teams will be indispensable as
you develop the processes and procedures
for all of the other PAs. Because the PSP
and TSP address most of the CMMI PAs
to at least some extent, your TSP teams will
have at least some experience with most
of the PAs that you will need to address.

As you begin working on any particu-
lar PA, your first step should be to discuss
it with your TSP team members. As you
find out how they address that particular
PA, you will find that at least some of the
procedures you will need already exist.
Then, as you explore more deeply to
expand those processes to fully satisfy the
goals of the CMMI, your TSP team mem-
bers will be likely to have good ideas about
how to add any missing practices, or how
to tune those that in some way fall short.

Because of their experience with using
and improving disciplined processes, they
will be strong members of any process
action team that you establish. They will
contribute practical ideas to meet the
CMMI goals, and they will be able to eval-
uate alternatives from the basis of practi-
cal experience. TSP team members will
help to make your process action teams
effective at defining and documenting
processes and procedures that will work
in your organization.

Summary
Adding the TSP to a CMMI initiative does
not mean adding more work to an already
overworked group. Rather, it can be an
effective way to accelerate that initiative
by laying a solid foundation of process
discipline, engaging the engineers from
the very beginning, and providing
processes that already address a significant
number of CMMI practices. The costs of
incorporating the TSP into your CMMI
initiative should be more than returned as
you achieve your CMMI goals more
quickly and with less organizational pain.

In addition, by adopting the TSP, you
can convert your engineers into allies in
the process improvement initiative – peo-
ple who will lobby for better processes,
help you to realize them, and embrace
them in their day-to-day work.u

References
1. Davis, Noopur, and Jim McHale.

“Relating the Team Software ProcessSM

(TSPSM) to the Capability Maturity
Model® for Software (SW-CMM®).”
Pittsburgh, PA: Software Engineering

Institute, Mar. 2003 <ftp://ftp.sei.
cmu.edu/pub/documents/02.reports
/pdf/02tr008.pdf>.

2. McHale, Jim. “The Case for Using
TSPSM With CMM®/CMMI®.” Soft-
ware Engineering Process Group
(SEPG) 2003, Boston, MA <www.
sei.cmu.edu/cmmi/presentations/
sepg03.presentations/tsp.pdf>.

3. Hefley, Bill, Jeff Schwalb, and Lisa
Pracchia. “AV-8B’s Experience Using
the TSP to Accelerate SW-CMM
Adoption.” CrossTalk Sept. 2002
<www.stsc.hill.af.mil/crosstalk/2002/
09/hefley.html>.

Additional Reading
1. Pracchia, Lisa. “The AV-8B Team

Learns Synergy of EVM and TSP
Accelerates Software Process
Improvement.” CrossTalk Jan.
2004 <www.stsc.hill.af.mil/crosstalk/
2004/01/0401pracchia.html>.

About the Author

Alan S. Koch is presi-
dent of ASK Process,
Inc., a training and con-
sulting company that
helps organizations to
improve the return on

their software investment by focusing on
the quality of their software products
and the processes they use to develop
them. Koch was with the Software
Engineering Institute (SEISM) for 13
years where he became familiar with the
Capability Maturity Model®, earned the
authorization to teach the Personal
Software ProcessSM (PSPSM), and worked
with Watts Humphrey in pilot testing the
Team Software ProcessSM (TSPSM). He
also worked in software development for
28 years. Koch is an SEI-authorized PSP
Instructor and TSP Coach candidate, an
SEI Transition Partner for the PSP and
TSP, and a certified Project Management
Professional. He is a member of the
Project Management Institute and
author of “Agile Software Development:
Evaluating the Methods for your
Organization.”

ASK Process, Inc.
4378 Ridge RD
Natrona Heights, PA 15066
Phone: (412) 849-0421
E-mail: alan.s.koch

@askprocess.com

8 CROSSTALK The Journal of Defense Software Engineering March 2005

Microsoft’s IT Organization Uses PSP/TSP to
Achieve Engineering Excellence

Carol A. Grojean
Microsoft Corporation

Projects today are beset with problems from the very beginning. Many of these problems come from outside the team, be it
over-ambitious deadlines from management, last-minute scope changes from the customer, or not enough resources. But not all
problems can be blamed on these issues; many of the projects’ problems come from within: failure to plan, failure to track
actual progress against the original plan, failure to include changes in the plan, poor estimation, and failure to understand
when effort deviates from the plan. The Personal Software ProcessSM teaches engineers that estimating and planning are a big
part of their job, and that what they predict drives all other efforts. At the Team Software ProcessSM level, we bring the team
together to define their processes and make a detailed plan. The process then requires the team to enforce their commitment as
well as their individual behavior to follow the process to track time, use data, and get high quality.

The success of organizations that pro-
duce software-intensive systems de-

pends on well-managed software develop-
ment processes. Implementing disciplined
software methods, however, is often chal-
lenging. Organizations seem to know what
they want their teams to be doing, but they
struggle with how to do it [1].

Unfortunately, when consistently chal-
lenged with a schedule, the defect elimina-
tion process continually gets pushed later
and later into the development cycle and,
eventually, over-the-wall to test so the engi-
neers can continue to be productive and meet
their schedule-driven goals. Many organiza-
tions fail to truly understand the impact
poor quality has on their ability to meet
schedule commitments.

Peter Russo, general manager for
Microsoft’s information technology (IT)
application architecture group comments
that:

There are two fundamental issues in
most IT organizations today, one
being the ability to accurately pre-

dict a project schedule, and the
other being the quality of the prod-
uct once you are finally done – and
these are two challenges we have to
start addressing today.

Data Analysis and Findings
Most software organizations are facing crit-
ical business needs for better cost and
schedule management, effective quality
management, and cycle-time reduction [2].

In 1994, the Standish Group reported
in their famous “Chaos Report” [3] that
only 16 percent of projects succeed while
31 percent fail and 53 percent are signifi-
cantly challenged, with the average project
running approximately 189 percent over
schedule (see Figure 1). In 2000, while
things appear to be getting a little better, we
still have a ways to go.

Furthermore, the Standish Group cites
that while numbers appear better, that is
not the entire story: many projects are over-
ly estimated.

In a number of focus groups, IT

executives told us that they first get
their best estimate, multiply by two
and then add a half! It should not be
surprising, therefore, that the major-
ity of these successful projects were
already 150 percent over budget
before they began! [3]

Most organizations have a schedule and
a fairly detailed plan, and generally their plan
goes one of two ways: either they have a
development cycle followed by a test cycle
where they expect the engineers to just fix
bugs during the test cycle, or their plan has
the engineers move on to developing the
next set of features, setting aside a little time
in case any bugs come up. In either case, the
amount of time the engineer needs to spend
regressing and fixing defects found by test is
woefully underestimated every time.
Additionally, once a product is released to
the customer, management assumes the
engineer is free to move on to the next proj-
ect or cycle of the product. The plans gen-
erally do not consider that defects from the
first release will take engineers away from
their progress on the second release – this is
how the vicious cycle begins.

The gap of quality code means that
engineers are spending too much time fix-
ing bugs, either from the previous release or
the current release, on code already passed
along to test. In doing so, they cannot make
progress on new work as originally planned.
This conflict creates a tension in the cycle
where there needs to be a balance between
injecting defects and removing them. The
current process of engineer-injecting and
test-removing is not a natural balance: The
system pushes back by surfacing all the
defects that testing cannot find to later in
the cycle. The only solution is to under-
stand that balance has to exist within the
development cycle, which Personal
Software ProcessSM (PSPSM)/Team Software
ProcessSM (TSPSM) helps us understand.

Project Resolution History (1994-2000)

2000

1998

1996

1994

28% 23% 49%

26% 28% 46%

27% 40% 33%

16% 31% 53%

0% 20% 40% 60% 80% 100%

Succeeded

Failed

Challenged

23%

28%

 33%

Figure 1: Project Resolution History [3]

March 2005 www.stsc.hill.af.mil 9

Life at Microsoft
As it turns out, life in Microsoft’s IT organ-
ization is not a whole lot different than
many other IT departments when it comes
to development. Many IT managers face
decreased headcount and budgets with
increasing support costs, as well as projects
with unpredictable schedules and lower
quality than they would like to see. As IT
manager Todd Baumeister puts it:

Today’s projects are estimated and
managed not with data, but on the
gut instinct of the developer – and
with this I have to go to the cus-
tomer with conviction to our proj-
ect schedule and then refute their
asks of wanting more in less time,
and this isn’t a position I want to be
in … I want a predictable schedule
that will demonstrate our ability to
plan for a date and hit that date and
when we deliver the product it will
be of high quality.

Every other IT manager I interviewed
had a similar story to tell, and many added
that they would like to see their team’s
morale increase. Another IT manager stat-
ed that he would like to basically “deliver a
high quality product on a predictable sched-
ule (when we said we would) without any
death marches or dead bodies left behind.”

Fundamental to all was the need to get
developers focusing on features and design
and delivering a high-quality product so
that test can focus on performance, reliabil-
ity, security, and ensuring the customer’s
needs are met, not this finding-fixing-test-
ing loop that exists today.

About two and a half years ago,
Microsoft IT Manager Aidan Waine was on
a plane from Seattle to Reno reading Watts
Humphrey’s book “Winning with
Software.” Waine’s development projects
were out of control with high bug counts,
ever-increasing test cycles and low delivery
predictability. Client satisfaction and engi-
neering team morale were both low. This
book directly addressed these issues,
describing controlled high-quality software
delivery through disciplined, repeatable,
data-driven engineering processes. Waine
bought another 28 copies for his manage-
ment team and clients. He jokes that no one
read the book or took him seriously, so he
went one step further and brought
Humphrey out to Microsoft. Senior man-
agement bought into the experiment – two
development teams were trained in the new
methods, and two TSP projects launched.

Results so far have ranged from good to
amazing. Waine said that the very first proj-

ect he ran in his newly organized team
more than paid for the training. His initial
reaction was, “Wow, we’re giving them two
weeks of training and look what we got
back!” The result of their first project,
though small, was all they needed.

As you see in Figure 2, for 4,255 new
and changed lines of code, Waine’s team
had only five defects from the time the
product went to system integration test
(SIT) to user acceptance test (UAT) to
released to the customer (RTC). The engi-
neers were bored in test – can you imag-
ine that?

When asked what challenges they faced
once they made the decision to pilot or
deploy PSP/TSP, all the managers inter-
viewed were senior enough that they under-
stood that they needed to lead by example,
and that executive support and involvement
is the No. 1 driver in project success. They
understood that what they were asking for
was a change of behavior from the individ-
uals as well as something that goes against
the culture of the organization, not to men-
tion the software industry itself: collecting
your data around time, size, and defects.

For the most part, they also mandated
the change. This understanding and execu-
tive sponsorship sent a common and con-
sistent message that change was expected
and as a result, they faced very little politi-
cal pushback. The biggest administrative
challenge they faced was finding the time to
get the engineers trained. “People don’t
come off the shelf PSP trained,” one man-
ager exclaimed. However, they understood

that this had to happen, and that no time
was going to be a good time. Moreover,
they found it increasingly hard to find
good, available coaches to lead their teams.

Additionally, there was the management
challenge of convincing the business to take
a four-week hit (for training and launching)
with some sort of promissory note that it
would be worth it in the end – a story they
had been sold before. Fortunately, as more
and more projects were finishing up, cus-
tomers began to hear success stories from
their counterparts and asked for the same
results on their IT-driven projects.

“I’m excited about this,” says Microsoft
Chief Information Officer Ron Markezich,
referencing a recent Accenture study titled
“Value Discovery: A Better Way to IT
Investments,” a survey of 100 large
European IT shops that showed astonish-
ing results [4]. Up to 60 percent to 70 per-
cent of most of an IT shop’s budget is
spent on sustainer activities such as support
and fixing bugs. Markezich said:

I’m excited because the potential for
this to not only reduce our product
cycles and increase our quality, but
ultimately freeing up much of our
sustainer activities enables us to
invest more in builder activities that
drive more value to the business.

What Do the Engineers Think?
A little over a year ago, I had the opportu-
nity to launch an internal tools team that
was literally broken down, having just come

Figure 2: TSP Productivity Gains

Microsoft s IT Organization Uses PSP/TSP to Achieve Engineering Excellence

10 CROSSTALK The Journal of Defense Software Engineering March 2005

Team Software Process

off a project that was cancelled after two
and a half years of effort. According to
Software Engineer Vivek Rao:

I had just started at Microsoft when
our team decided to adopt
TSP/PSP. I did not know then, but
would learn later, that the team was
lagging in their interface with cus-
tomers and was not listening to their
needs. The team did the two-week
PSP training of which I was a part.
In the beginning, I was very skepti-
cal of the idea, since it seemed like
too much process to me. I felt it
would stifle innovation. However,
during the training I saw the impor-
tance of spending time to review
my design and code. The satisfac-
tion that I was getting by having
zero defects in compile and an
essentially defect-free program was
invaluable. I also realized that I was
a lot more confident about the code
than I ever was. There was clearly an
idea of design, code, and review
both and be done with it, rather
than keep fixing bugs later on, for-
ever. I quickly realized the contribu-
tion of the PSP process toward
quality of the code.

“It is very hard to convince people to
change until they have to,” said Watts
Humphrey, “and the power of the PSP is
that they see things change effectively” [5].
With PSP, the engineers honestly begin to

see the change and begin to understand that
to do good work you have to be disciplined,
but change is hard. “People want to fight
change and fight the notion of tracking
time, size, and defect information,”
Humphrey said. “Most engineers just want
to write code and don’t perceive the other
phases of the project (planning, design,
reviews and inspections, etc.) as value-
added, though they generally know they are
good things to do.”

That is the good part about PSP/TSP:
earned value helps measure time all the
way through the product development
cycles, and people realize the importance
of planning before design, design before
coding, code reviews and inspections, etc.
They also start seeing little changes right
away – a code compiles without defects
(or many fewer than before) or a test is
virtually defect-free, which is something
they never believed possible before. When
the product gets to test and they are not
scrambling around fixing bugs, they quick-
ly become believers. Furthermore, they do
not spend a lot of time arguing severity or
priority of a bug because they have time to
fix everything.

Vivek stresses this and goes on to say:

The team then went into launching
the project, what TSP calls a launch.
The amount of energy that was
generated during the launch was
amazing – it really gelled the team
together. The launch made the cus-
tomer requirements clear and

helped the team obtain buy-off on
the schedule from the customers. It
also helped me see the big picture of
the project and my dependencies.
During the launch, we also modified
some of the processes to fit our
needs, and it was clear that TSP
could be modified to suit a team’s
needs. We have made small changes
to the process over time to make it
more efficient for us, while at the
same time ensuring quality.

As the project proceeded, I quickly
realized one additional benefit of
TSP: as a newcomer to the team, I
was not familiar with the code base.
I started taking part in many design
and code reviews and because of
this, I learned a lot about the code
from experienced team members.
For a new hire, TSP is an excellent
means to learn about the design and
code of a product in a short period
of time. TSP also generated in the
team a new sense of ownership and
commitment toward the customer
needs. Although this is not a direct
result of TSP, it has resulted in the
team scoring a 10/10 in customer
relations.

To summarize, the proper applica-
tion of PSP leads to an immense
sense of achievement and satisfac-
tion, and TSP furthers this to the
team level, ultimately resulting in
good products.

And the results of their first pilot speak
volumes:
• Ninety-six percent schedule accuracy –

finished two weeks late with three
weeks of added features.

• Delivered 1.36 defects/thousand lines
of code (KLOC) to system test.

• Huge improvement in partner satisfac-
tion.

Specifically, their defect removal profile on
12,253 new and modified LOC looked like
Table 1.

On 12,253 new and modified LOC, the
team spent approximately 584.6 hours in
review and inspection phases of the project
(otherwise known as appraisal cost of qual-
ity), and spent 109.1 hours total for com-
pile, system test, and user acceptance test
phase (otherwise known as failure cost of
quality) for a total of 693.7 hours finding
and removing defects. This represented an
appraisal to failure ratio of 6.361.

Prior to system test, they had removed
921 defects – a yield of 98.6 percent (mean-
ing 98.6 percent of the defects injected into

Table 1: Defect Removal Profile by Phase

the work product prior to system test were
removed prior to system test). If the indus-
try average were to be about 50 percent
(many feel it is not that good, but I will be
conservative) and had this team been aver-
age, then approximately 460 of the 921
defects would have slipped to system test or
later phases. If system test had a 50 percent
yield, then they would have had to remove
at least 230 defects in system test. Time
wise, most teams I coach plan for defects in
system test to take about half a day to find
and fix (on average), meaning they would
have spent 920 hours finding and fixing
defects in system test instead of the 28
hours that they actually spent.

Additionally, another 230 defects
would have slipped to user/beta testing
where, with another 50 percent yield and a
cost of about a day, or eight hours, to find
a fix, you have to find and fix an addition-
al 115 defects at the cost of eight hours
per defect (on average) to find and fix or a
total of another 920 hours. Instead, they
had no defects.

That leaves the product going to the
customer with 115 defects which, on aver-
age, 50 percent of those will be found over
the product lifetime (or a total of 696 hours
to find and fix). That is a difference of 2,536
hours of finding and fixing bugs in our old
way of doing things versus 34 hours they
actually spent (a project savings of 2,502
hours). That is the difference of spending
three-quarters of a week fixing bugs post-
development versus 5.76 weeks for 11 engi-
neers. This is illustrated in Table 2.

What Does the Customer
Think?
If your IT organization is anything like
ours, then you are probably continually
pushing for change – whether it is with
tools or the latest methodology or a new
definition of your project life cycle. You are
constantly striving to figure out how to get
more out of your people for less.

I can only imagine what our internal
customers thought when we approached
them with this new process.

Cyndee Kraiger has been in Microsoft
Operations for more than 11 years, and has
been the recipient of many IT projects in
that time. About 18 months ago, she

pushed for a new tool to manage the oper-
ations for our volume license deliverables.
This tool was to replace an extensive set of
spreadsheets that had become so unman-
ageable that even a small mistake could cost
Microsoft hundreds of thousands of dol-
lars. While this project was the second TSP
project for the Business Unit IT organiza-
tion Kraiger was in, it was the first for her
and she did not really know what to expect.

Kraiger had been through several proj-
ects before as the business owner. She said
that this project had a different level of
engagement than traditional projects from
the very beginning. “More of my time was
required but the content of the meetings
were of high quality.” She said that she was
even given examples of what to expect
from the project up front. “My team was
engaged daily and felt very involved and
committed at all times.”

Other projects, she said, typically start
out with a meeting in the beginning of the
project with some sort of expectation
being set (time, features, cost) and then
another meeting in the end with what was
developed. Of course, compromises hap-
pened along the way, generally without her
knowing it. But with this project, her
expectations were managed all the way
through and at the end of the project, she
was putting the bow on the wrapping, (not
her typical experience). There were no sur-
prises. The final result is in Table 3. The
project was delivered on schedule. As you
see, “I got what I wanted when it was
promised and the product was of high
quality,” said Kraiger.

Summary
It would not be fair to blame all software
problems on software developers. When
we are consistently challenged with a sched-
ule, the process of eliminating defects con-
tinually gets pushed back later and later into
the cycle and, eventually, over-the-wall to
test so that the engineers can continue to be
productive and meet their schedule-driven

goals; this is classic shifting the burden [6].
In this environment, we have our quick

fix of giving the code to the test team to be
fixed. Then we have the unintended conse-
quence of defects coming back to us later
to eventually fix, at the expense of the cur-
rent project, which then falls behind.
However, the pressure to continue to meet
schedule milestones continues, and so the
behavior continues as a project’s schedule
begins to atrophy in its ability to meet
established schedules, quality statements,
and/or features.

It is just too expensive for any organi-
zation to try to test quality in; it cannot be
done. And without being able to accurately
predict our project schedules and resource
needs, we just cannot run our organization.

Jon DeVaan, senior vice president of
Engineering Strategy at Microsoft frequent-
ly references the article “Nobody Ever
Gets Credit for Fixing Problems That
Never Happened” [7]. The article address-
es the reality every manager faces: dedicat-
ing additional effort to either work or
improvement can increase the performance
of any process. The issue at hand is do you
go down the destructive work-harder loop,
where you feel short-term gains despite
long-term consequences, or do you follow
the constructive work-smarter loop, where
you feel short-term pain for long-term
investment in capability?

What strikes DeVaan most about this
article [7] is the story about the BP team
that reduced butane flare-off to zero in
just two weeks, saving $1.5 million per
year at a cost of about $5,000 to imple-
ment, creating a return on investment of
30,000 percent per year. The article
reported that members of the team had
known about the problem and how to
solve it for eight years. They already had
all the engineering know-how they needed
and most of the equipment and materials
were already on site. What had stopped
them from solving the problem long ago?
The only barrier was the mental model

Microsoft’s IT Organization Uses PSP/TSP to Achieve Engineering Excellence

March 2005 www.stsc.hill.af.mil 11

Figure 3: Defect Removal Profile by Phase

Phase Number of
Defects
Into Phase

Yield Defects To
Be Fixed in
Phase

Average
Time to Fix
(each bug)

Total Fix
Time

Actual
Number of
Defects

Actual
Time Spent
by Team

System Test 50% 230 4 hours 920 hours 9 28 hours460
User/Beta Test 230 50% 115 8 hours 920 hours 1 6 hours
Release to Customer 115 50% 58 12 hours 696 hours 0 0 hours
Total 2,536 Hours versus 34 Hours

New Lines of Codes 59,616
Number of defects found in System Test (ST) 42 (0.705 defect density)
Number of defects found in User/Beta Acceptance Test (UAT) 5 (0.084 defect density)
Number of defects found in Production (to date) 9 (0.151 defect density)

Table 2: Comparison of Typical Results

Figure 3: Defect Removal Profile by Phase

Phase Number of
Defects
Into Phase

Yield Defects To
Be Fixed in
Phase

Average
Time to Fix
(each bug)

Total Fix
Time

Actual
Number of
Defects

Actual
Time
by Team

System Test 50% 230 4 hours 920 hours 9 28 hours460
User/Beta Test 230 50% 115 8 hours 920 hours 1 6 hour
Release to Customer 115 50% 58 12 hours 696 hours 0 0 hour
Total 2,536 Hours versus 34 Hours

New Lines of Codes 59,616
Number of defects found in System Test (ST) 42 (0.705 defect density)
Number of defects found in User/Beta Acceptance Test (UAT) 5 (0.084 defect density)
Number of defects found in Production (to date) 9 (0.151 defect density)

Table 3: Illustration of Final Results (Quality)

12 CROSSTALK The Journal of Defense Software Engineering March 2005

(thinking) that there were no resources or
time for improvement, that these prob-
lems were outside their control, and that
they could never make a difference.

DeVaan emphasized that people should
have the courage to change:

Generally, most people know what
the problem is and perhaps even
how to fix it; the difficult part is
just getting people to change.
Everyone recognizes the problem
and oftentimes it gets expressed
over and over again in cynicism.
The true insight is getting every
level of management to under-
stand that they are part of the
problem when they continually
reinforce the work-harder loop.

DeVaan further expressed that it takes a
lot more guts to change the lower in the
management chain you are. “At some point
there has to be a line drawn where any man-
agement above the line is to the point of
negligence for letting the behavior contin-
ue.” He said that we need people to have
the courage to take the heat when the drop
(in productivity) is down, whether it comes
from the board of directors, the chief exec-
utive officer, or the line manager.

We all have to get on the work-smarter
track and recognize that long-term gains
in process improvement do not come
overnight – just as they were not created
overnight.u

References
1. Humphrey, W.S. “A Discipline for

Software Engineering.” 2nd ed. Manu-
script submitted for publication. 2004.

2. Humphrey, W.S. Winning With Soft-
ware: How to Transform Your
Software Group Into a Competitive
Asset. Boston: Addison-Wesley (Pear-
son Education), 2002.

3. Standish Group International, Inc.
The Chaos Report. Standish Group
International, Inc. <www.standish
group.com/sample_research/PDF
pages/chaos1994.pdf>.

4. Curtis, G.A., R. Melnicoff, and Tor
Mesoy. “Value Discovery: A Better
Way to IT Investments.” Outlook
2003, No. 3 <www.accenture.com/
xdoc/en/ideas/outlook/3_2003/pdf/
info_technology.pdf>.

5. Humphrey, W.S. Personal interview.
Aug. 2000.

6. Senge, P., et al. The Fifth Discipline:
Strategies and Tools for Building a
Learning Organization. New York City,
NY: Doubleday, 1994.

7. Repenning, N., and J. Sterman. “No-

body Ever Gets Credit for Fixing
Problems that Never Happened: Cre-
ating and Sustaining Process Improve-
ment.” California Management Review
4 (2001): 64-88 <http://search.epnet.
com/direct.asp?an=5244741&db=
bch&loginpage=Login.asp&site=
ehost>.

Note
1. The appraisal-to-failure ratio is a meas-

ure of the cost of quality. Specifically,
you want to measure the percentage of
time you spend in appraisal phases of
your cycle (such as design and code
reviews and inspections) versus how
much time you spend in failure phases
(such as compile, system test, and cus-
tomer test). Appraisal cost of quality
(COQ) percentage is calculated as 100*
(appraisal time)/(total development
time). The failure COQ percentage is
calculated by taking 100*(failure
time)/(total development time). The
total appraisal to failure ratio is then cal-
culated by taking the percent appraisal
COQ divided by percent failure COQ
(percent appraisal COQ)/(percent fail-
ure COQ).

Team Software Process

About the Author

Carol A. Grojean is a
certified Personal Soft-
ware ProcessSM (PSPSM)
instructor and Team Soft-
ware ProcessSM (TSPSM)
Launch Coach and has

been practicing TSP at Microsoft since
May 2002 when she was the team leader
of the company’s first pilot project.
Grojean was in Microsoft’s IT organiza-
tion for eight years before moving in to
her current role as a member of the com-
pany’s Quality Engineering Practices
organization, helping to drive engineering
best practices throughout the product
group, including piloting PSP/TSP.
Grojean has a Masters of Business in
management information systems and a
Masters of Science in project manage-
ment and is a certified Project
Management Professional.

Microsoft Corporation
One Microsoft WY
28/1230
Redmond,WA 98040
Phone: (425) 706-8903
Fax: (425) 706-7329
E-mail: cscott@microsoft.com

April 4-6
Defense Technical Information

Center (DTIC) Conference
Alexandria, VA

www.dtic.mil/dtic/annualconf/

April 5-7
Federal Office Systems

Exposition (FOSE) 2005
Washington, DC
www.fose.com

April 18-21
2005 Systems and Software

Technology Conference

Salt Lake City, UT
www.stc-online.org

May 2-6
Practical Software Quality and

Testing (PSQT) 2005
Las Vegas, NV

www.qualityconferences.com

May 14-15
ACM Symposium on Software

Visualization

St. Louis, MO
www.softvis.org/softvis05

May 15-21
27th International Conference on

Software Engineering (ICSE)
St. Louis, MO

www.icse-conferences.org/2005

May 16-20
STAREAST 2005

Orlando, FL
www.sqe.com/stareast

May 23-26
2005 Combat Identification

Systems Conference
Portsmouth, VA

www.usasymposium.com/combatid

COMING EVENTS

March 2005 www.stsc.hill.af.mil 13

The mission of the Information
Systems Development Center of

Sandia National Laboratories in
Albuquerque, N.M. is to provide software
development and support services for a
variety of internal customers in support of
their national defense and energy-related
work. The organization’s software devel-
opment process, called Software and
Information Life Cycle (SILC), is used for
all work and is meant to embody
Capability Maturity Model® for Software
(SW-CMM®) Level 3 processes.

In 2001, the organization decided to
run a pilot Personal Software ProcessSM

(PSPSM)/Team Software ProcessSM (TSPSM)
technology insertion program by training
developers in PSP and launching TSP
teams. The motivation for introducing
these processes was to supplement SILC
with personal/team processes that encour-
aged process improvement for the individ-
ual developer.

The SILC process is organized in phas-
es consisting of Planning, Analysis,
Design, Implementation, and Deploy-
ment. The organization’s business model
requires a proposal for each project, which
must be approved by both the customer
and management. After approval, the
SILC process is enacted throughout the
life of the project. The TSP projects
launched so far have, with the exception of
one case, started with the analysis phase.
Figure 1 shows the overlay of the TSP
process on the SILC process.

Early Experiences Using TSP
Since the initial pilot in 2001, a significant
number of development staff has been
trained in PSP and TSP. Fifty-six develop-
ers have completed the 10-day PSP class,
and 44 managers and non-developers have
completed the two-day Introduction to
PSP class. The TSP process requires a
multi-day project launch, which produces
an overall project plan and a detailed next
phase or cycle plan. A relaunch occurs at
the end of each phase or cycle to develop
the next cycle or phase detailed plan. The
first TSP launch occurred in February

2002; currently, a total of eight projects
have used TSP with eight launches and five
relaunches.

During the early launches with TSP,
there was a lot of hesitation by teams
about using TSP in addition to the man-
dated SILC process. A great deal of dis-
cussion centered on whether TSP could
replace SILC outright since TSP already
has a defined process; the argument went
further on the congruity of SILC roles
and TSP roles. SILC defines a set of prod-
uct engineering roles such as analyst,
designer, builder, and database administra-
tor. The TSP defines roles that are a com-
bination of product engineering roles and
project/process management roles such
as design manager, implementation man-
ager, planning manager, process manager,
quality manager, support manager, and
test manager. Aligning these two role sets
consumed a fair amount of time and team
energy.

The Software Engineering Institute
prototype TSP tool also became a major
point of contention: the tool did not pro-
vide the user-friendly aspects developers
have come to expect. Phases in the TSP
tool did not align readily with SILC phas-
es, and users were not able to change them.
Even the TSP earned value system came
under attack from some project leads who
had attended Project Management
Institute (PMI) training as different from
the PMI and Department of Defense
(DoD) definition of earned value. The
TSP earned value system focuses on effort
and does not address cost, while the PMI
and DoD version of earned value track
cost and budget burn rate. In addition to
the information on effort expended pro-

vided by TSP, project managers have to
monitor the organizations’ financial man-
agement system to have an accurate pic-
ture of total project costs.

Based on these early experiences, it
was not clear whether these struggles
would result in the outright rejection of
TSP as an organizational process. Two
developments led to a more favorable
view of TSP use within the organization.
Management issued a policy – without
specifying use of the TSP – that required
all projects to report their status based on
facts and data. The policy provided an
addendum to the SILC glossary, defining
terms such as plan and actual task hours,
percent work complete, unplanned task
hours, etc. This policy changed the nature
of the TSP insertion from a push from
above to a pull from managers and project
leads that needed a way to satisfy the pol-
icy. Additionally, TSP began to be viewed
by project leads as a useful way to struc-
ture and run their projects.

Overall, it has taken some time to
build support for TSP among manage-
ment and practitioners. However, each
project provided some valuable lessons
learned and also provided greater visibility
into some of the organization’s issues.
Lessons learned from the early experi-
ences are described here.

Lessons Learned From the
Initial Experiences Using TSP
Most participants in the early TSP project
saw the potential of this methodology, if
some of its concerns could be addressed.
The use of TSP highlighted several
process improvement areas for the organi-
zation as a whole. While the launch meet-

Experiences With the TSP Technology Insertion
Iraj Hirmanpour

AMS, Inc.

Transitioning the Team Software ProcessSM (TSPSM) methodology into an organization is not an easy or simple task. It
requires significant behavior change by not only the developers, but also the major stakeholders. In this article, we share three
years of experience with the TSP transition team at Sandia National Laboratories with two intertwined perspectives: that
of the TSP coach, and that of the development manager supervising the TSP projects.

Ray Trechter
Sandia National Laboratories

Figure 1: Insertion of TSP into SILC Process

Analysis Design Implementation Deployment

TSP Launch
Relaunch

Project
Planning

Figure 1: Insertion of TSP into SILC Process

ing scripts and requirements engineering
improvements were specific to TSP, proj-
ect time accounting and the number of
projects per developer applied to the
organization as a whole.

Launch Meeting Scripts
First, everyone agreed that the TSP launch
process requiring extended discussion on
project issues between team management
and customer, and among team members
was highly beneficial. One developer com-
mented, “The most beneficial aspect of
this process was the TSP launch.

“The launch gave us the opportunity
to step away from work for a few days,
think about what the project required, and
plan for the project accordingly.” The
launch scripts were altered to include
SILC-mandated management reviews at
the end of each launch. Stakeholders,
including funding sources, end-user repre-
sentatives, and project management were
able to see the results of the launch and
were presented with an accurate plan of
what the project would accomplish in the
next three to four months.

Requirements Definition
Through the use of both SILC and TSP, it
was discovered that the feature-level
requirements typically found in a SILC
proposal did not provide enough detail for
systems analysts and designers to create
their TSP plans. Some early TSP launches
were suspended while the team worked
requirements to the point where the team
had a common mental model of what was
needed from the system. It was decided
that the minimum knowledge of require-
ments and systems characteristics needed
was equivalent to the information required
by a concept of operations document
(IEEE Standard 1362-1998). A concept of
operations document is now required for
TSP launches.

Time Tracking
The idea of time logging was initially not
well received by the practitioners. It was
not clear to them how this data would be
used and some worried that management
might use the data to judge their perform-
ance. Over time, teams have come to real-
ize that the increased visibility provided by

this data not only helps management, but
also the teams have a better understanding
of project progress.

Task Time
Task time is defined by TSP as time spent
on project-related tasks. All other activities
such as attending meetings, e-mailing, tak-
ing a break, etc. are not considered task
time. The organization did not have the
metrics to know the amount of task time
available for developers. When the TSP
coach suggested starting with 20 hours per
week for planning purposes, one manag-
er’s reaction was, “What will we do with
the other 50 percent of the time?” After a
few projects, data showed that 20 hours
per week was not possible due to other
duties and the dynamic nature of the envi-
ronment.

Multiple Projects Per Developer
Developers were divided among several
projects; some developers were divided
among as many as four or five projects
making task time availability for the TSP
project only 10 percent (two hours per
week) or 20 percent (four hours per week)
using the measure of 20 hours of available
task time per week. Data showed that such
a limited resource assignment method is
inefficient. The practice has now been
changed to allocate each developer to a
maximum of two projects.

Moving Up to the Next Level
As mentioned earlier, last year the
Information Systems Development Center
mandated that projects report their status
with facts and data. Guidelines for a
reporting system and a glossary of terms
were published to help management and
practitioners understand the policy
requirements. When a new manager (co-
author of this article) took over the man-
agement of a department within the
Development Center, one of 10 such
units, he was faced with the mandate of
data reporting.

The new manager made the tactical
decision to make TSP available to any team
that requested it. So far, three teams have
selected the TSP as their method of choice
to manage their data projects. The experi-
ence this time around is markedly different

from our initial experiences with TSP. In
what follows, we describe the policy for
managing projects with data and our new
experiences with TSP. We also describe the
behavior of a TSP practitioner, and the
TSP reporting system that provides status
reports that one can act on. Finally,
insights are offered on how we use the
data to manage a portfolio of projects.

A Typical Day in a TSP
Practitioner’s Life
The TSP practitioners in the group noted
previously exhibit very different behavior
patterns from those in the past. They like
the model of personal and team planning
as opposed to a plan handed to them by a
project lead. They take ownership of the
project and not just of the tasks assigned
to them.

A typical day for a TSP practitioner is
partitioned into two areas: the time spent
on tasks related to the TSP project and
time, and the time spent on other activities.
TSP practitioners keep track of project
task time to the minute using a time log.
Individual developers use a defined
process to develop software and record
time based on phases of their personal
process; it is rich with personal reviews for
early defect removal.

A typical TSP developer’s personal
process would have phases such as design,
design review, code, code review, compile, and test.
All these steps are measured in terms of
time spent and defects injected or
removed. By collecting the three basic
measures of effort, defect, and size, and by
recording task completion date, a host of
metrics is available to the developer. These
metrics help the developer manage work,
and compare actual work with planned
work at a personal level. An example of
the type of metrics derived from the three
basic core measures is the dashboard style
data shown in Table 1.

The data in Table 1 is from a develop-
er’s plan in week three of an eight-week
project. It shows that, so far, effort esti-
mation has been twice that of actual effort
needed for completed tasks. As a result, it
shows that the project is ahead of sched-
ule: 51 percent complete compared to the
planned 30 percent complete. Clearly, this
is good information to have at an early
stage, as there inevitably is someone else
who may be behind in his plan. During the
TSP weekly meeting, one of the activities
is load balancing when the data indicates
the need.

The practitioner submits his/her per-
sonal plan to the planning manager (a
member of the team) for consolidation on

14 CROSSTALK The Journal of Defense Software Engineering March 2005

Team Software Process

Figure 1: Insertion of TSP into SILC Process

Table 1: A Developer’s Weekly Status Report

Analysis Design Implementation Deployment

TSP Launch
Relaunch

Weekly Data Plan Actual Plan/Actual
Project hours for this week 20.0 22.6 0.88
Project hours this cycle to date 33.0 28.0 1.18
Earned value for this week 19.2 36.3 0.53
Earned value this cycle to date 30.0 51.1 0.59
To-date hours for tasks completed 49.7 25.7 1.93

Project
Planning

Table 1: A Developer’s Weekly Status Report

Experiences With the TSP Technology Insertion

March 2005 www.stsc.hill.af.mil 15

a weekly basis. The planning manager cre-
ates a consolidated plan for the team
leader to use for weekly status reporting, as
well as for periodic management reporting.
This consolidated plan allows the team to
know the true status of a project and to
take corrective actions when necessary. A
similar view is available for the team to
analyze the status of the project.

TSP Project Reports
The primary outcome using the TSP model is proj-
ect reports. Periodic review of project deliv-
erables and regular status reports are built
into the TSP process. These reports need
to be accurate, actionable, and based on
verifiable project data. In essence, these
status reports can be thought of as dials on
a development manager’s equivalent of a
pilot’s instrument panel that show the sta-
tus of many projects. A continual scan of
the dials should reveal unfavorable project
trends and allow for their early correction.

Status reporting for a software devel-
opment project – the dials – provides a
quantitative answer for some typical status
questions such as the following:
1. How much of the project is complete

at this time?
2. Given the progress at a given point in

time, when will the project finish?
3. How much time has the development

team been able to devote to project
tasks?

4. Has the team spent substantial time on
unplanned work?
Two charts can be created that will

quickly provide answers to these ques-
tions. The first chart uses a measure called
earned value. Earned value is one way to
determine how much of a project is com-
plete, and predict when it might finish.
This measure is calculated by comparing
the planned hours for completed tasks to
the total planned hours for a project. A
couple of comments on the earned value
calculation: It is important to stick to the
planned hours when calculating earned
value even though more actual hours were
needed to complete the tasks involved.
Also, the hours for completed tasks
should only include those tasks that are
100 percent complete. In other words, a
task is done or it is not done. This pre-
vents counting tasks that are perpetually
90 percent complete and thereby overstat-
ing a project’s progress.

Figure 2 shows an earned value chart
for a project. Notice that the actual earned
value, or the sum of the hours for com-
pleted tasks, is shown against the planned
earned value. In a straightforward way,
these two lines show how well the project
is tracking against the original plan. Ideally,

these two lines will overlay each other, thus
signifying a project that is on plan. As is
often the case, however, actual earned
value will lag behind planned earned value.
When this lag is 10 percent or less, the
cause may lie with major tasks that will
soon finish or project conditions that will
respond to minor corrections.

When actual earned value deviates by a
larger amount, stronger corrections may
be needed. One of the causes of this devi-
ation often is unplanned work. Work that
was not anticipated and included in the
project’s planning, but was deemed neces-
sary. A line plotting the hours for
unplanned work is included in Figure 3 to
track this phenomenon.

From looking at the earned value chart
in Figure 2, overall project progress is eas-
ily determined. Since only completed tasks
are counted, the actual earned value readi-

ly shows that the project is 40 percent
complete. An expected time of comple-
tion can also be surmised from this data.
Given a constant earned value rate for the
project, a 10 percent variance on a 52-week
plan would cause the project to finish
approximately five weeks after the planned
finish date. Alternatively, the development
manager could attempt to recover and
catch the project up by requiring overtime
or assigning additional staff.

The planned and actual team hours
shown in Figure 3 can often provide clues
on why the project’s earned value is lag-
ging. In this case, the team’s actual hours
are behind what was planned; for some
reason, team members were not able to
devote as much time to the project as
expected. This could result from an esti-
mation error – typical software engineers
can expect to put in 20 hours of a 40-hour

Table 1: A Developer’s Weekly Status Report

A Typical Project
Cumulative Earned Value

0

10

20

30

40

50

60

70

80

90

100

Octo
be

r

Nov
em

be
r

Dec
em

be
r

Ja
nu

ar
y

Feb
ru

ar
y

M
ar

ch
Apr

il
M

ay
Ju

ne Ju
ly

Aug
us

t

Sep
te

m
be

r

Project Duration
E

ar
n

ed
V

al
u

e

% Planned Work

% Work Completed

Figure 2: Planned Versus Actual Earned Value

Figure 2: Planned Versus Actual Earned Value

A Typical Project
Cumulative Team Hours: Planned, Actual and Unplanned by Month

0

500

1000

1500

2000

2500

3000

3500

Oct
ober

Nove
m

ber

Dec
em

ber

Ja
nuar

y

Feb
ru

ar
y

M
ar

ch
April

M
ay

Ju
ne

Ju
ly

August

Sep
te

m
ber

Team Hours on Unplanned Activities

Cumulative Planned Team Hours

Cumulative Actual (against plan)
Team Hours

Project Duration

Figure 3: Planned Versus Actual Hours

week on project work. The rest go to
meetings, ad-hoc assignments, etc. This 50
percent productivity factor can be lower
depending on the environment. Other
projects with competing priorities may
have pulled team members away. Also,
team hours used on unplanned activities
are worth tracking and monitoring; this is
the time spent on project-related work that
was not anticipated or included as part of
the project plan. Often these hours can be
substantial, and one can see an increase in
unplanned activities that are usually
accompanied by a corresponding decline
in actual team earned value.

Stepping back and taking a look at
both charts, the development manager can
draw the following conclusions. This proj-
ect started to deviate from estimates as
early as January. Progress appears to be
hampered by the amount of time the team
is able to apply to the project; if no action
is taken, the project will miss its comple-
tion date. This is an early warning for the
development manager to talk to the team
lead and project members, ask some
pointed questions, and develop a much
richer picture of the project’s status and
obstacles.

In addition to schedule data, the TSP
reports provide a rich set of quality data
and an early warning system related to the
quality being built. Although the previous
two charts help us to track schedule
progress, we also need to know that the
product being built is of acceptable quali-
ty so it will not get bogged down during
the test phase – a typical scenario in many
software projects.

One dial that TSP does not provide the
development manager with is projected
and actual projects costs. There are a num-
ber of reasons why TSP-supplied data is
not sufficient for providing financial sta-
tus. TSP plans and measures activity in
terms of available hours, and even though
the typical software engineer has 20 hours
available per week, he or she must be paid
for the full week. There is also no provi-
sion for tracking common project expens-
es such as training and purchases. A
scheme for loading available hours to
accommodate these costs seems possible
but has not been attempted in the projects
in which either author has been involved.
That said, TSP’s performance and sched-
ule have proven very useful at Sandia, and
the use of the organization’s financial sys-
tem to help provide the overall project sta-
tus has not been burdensome.

Managing Project Portfolio
The secondary outcome using the TSP model is
the ability to manage a portfolio of projects. As

mentioned before, Sandia’s Information
Systems Development Center has many
projects at any given time; currently only
three projects are using the TSP. However,
development managers must report status
on all projects in their portfolio to their
superiors and funding sponsors.
Understandably, these stakeholders want
visible and objective measures of progress
for the projects involved. Again, the desire
is to stay abreast of the development port-
folio and intervene should the develop-
ment manager need assistance keeping
projects on track. Whether that report is a
scorecard or takes another format, accu-
rate data that reflects the true state of
affairs is needed.

The difference between two types of
projects (TSP vs. non-TSP) is like day and
night when one tries to prepare scorecard
reports. The TSP projects have all the data
collected as part of their process; with
non-TSP projects, the project lead must
work much harder to collect time worked,
the numbers are often less accurate, and it
is harder to determine the true status of
the project. After having experienced both
reporting systems, undoubtedly the TSP
satisfies management by data requirements
without any additional effort. As men-
tioned earlier, the developers readily see
the value of data collection from their per-
sonal work processes, and when meeting
weekly as a team.

Summary and Conclusion
We do not intend to leave the impression
that all issues are resolved, and that TSP is
being used seamlessly in this organization.
The size issue raised during the first launch
has not gone away. The organization uses
function points to measure project size by

personnel outside of the project. The TSP
teams are not completely trained to use
function points for their size estimates and
are resistant to using lines of code as their
measure. Developers reason that since
they are working in a multi-tier architecture
environment using multiple languages,
using lines of code does not make sense
for their application environment. The col-
lection of defects at the personal level is
just getting started, and defect-counting
standards for design have been created.
Developers have been hesitant to record
defects, fearing that this information may
fall into the wrong hands and be used for
evaluation purposes. Not all teams have
chosen to use TSP to respond to the man-
agement-by-data mandate.

On the other hand, software projects
using the TSP have experienced a number
of successes. The three TSP projects
exhibit good project control and tend to
need only minor corrections because
problems are detected early. TSP meeting
scripts and the guidance of the TSP
launch coach have been an excellent way
to support new development project lead-
ers. The format of TSP team meetings
and use of its roles has increased the
teams’ sense of ownership of the work
and process. We look forward to improved
quality and performance as metrics are
collected from all members of the devel-
opment team and used to improve team
and personal processes. As mentioned ear-
lier, the rigorous timekeeping of these
TSP projects provides excellent project
visibility. Since this data comes directly
from those doing the work, status reports
derived from this information are fairly
objective and can provide good insight
into the progress of a project.u

Team Software Process

16 CROSSTALK The Journal of Defense Software Engineering March 2005

About the Authors
Ray Trechter, Certified
Software Development
Professional, is a soft-
ware development man-
ager at Sandia National
Laboratories. In addi-

tion to managing software develop-
ment projects, Trechter has worked in
the areas of software architecture, soft-
ware process improvement, and as a
developer of distributed systems.

Sandia National Laboratories
MS 0661
Albuquerque, NM 87185
E-mail: ratrech@sandia.gov

Iraj Hirmanpour is
principal of AMS, a
software process im-
provement firm and a
Software Engineering
Institute Personal Soft-

ware ProcessSM (PSPSM) and Team
Software ProcessSM (TSPSM) transition
partner. Hirmanpour is a PSP/TSP
consultant and trainer on the transition
of technology to organizations.

AMS, Inc.
421 Seventh ST NE
Atlanta, GA 30308
Phone: (404) 394-2028
E-mail: ihirman@earthlink.net

March 2005 www.stsc.hill.af.mil 17

Projects using the Team Software
ProcessSM (TSPSM) developed by the

Software Engineering Institute (SEISM)
have a phenomenal performance record,
especially in terms of meeting schedule
estimates. As noted by Watts Humphrey in
this issue of CrossTalk, current indus-
try data show that more than one-third of
all non-TSP software projects still fail [1].
In stark contrast, data gathered by the SEI
from 20 TSP projects in 13 different
organizations show that these TSP teams
missed their schedules by an average of
only 6 percent and had a very narrow
schedule variance range, from 20 percent
earlier than planned to 27 percent later
than planned [2].

Why do projects using the TSP suc-
ceed at meeting schedule commitments so
often and so well? Conventional wisdom
suggests this world-class performance is
due to two reasons: (1) TSP software engi-
neers have become experts at using histor-
ical data to produce highly accurate esti-
mates; and (2) TSP projects employ quali-
ty methods that drastically reduce or even
eliminate defects found in later process
phases (such as integration, system, and
acceptance testing), rendering these typi-
cally volatile development activities con-
sistent and predictable.

Years of real-world TSP project experi-
ence suggest that TSP’s approach to earned
value planning and tracking is also a signif-
icant factor in meeting schedule estimates.
In fact, while the factors listed above are of
great importance, our analysis indicates
that the management of earned value at the
team member level is more important than
both these factors combined. To under-
stand why, it is helpful to compare tradi-
tional earned value project management to
the approach used in the TSP.

Traditional Earned Value
Planning and Tracking
Many projects use a method called earned

value to plan and track progress. At the
beginning of a project, teams using earned
value will define a list of high-level project
tasks, and estimate the time each task will
require. As shown in Figure 1, a predicted
completion date for each task can be esti-
mated by determining when the project
will have expended the requisite effort or
Budgeted Cost of Work Scheduled
(BCWS).

The earned value method then assigns
each project task a value based upon its
estimated cost or effort. As each task is
actually completed by team members, the
project earns the originally estimated value
for the task; this is called the Budgeted
Cost of Work Performed (BCWP). The
real cost or effort to complete the task is
also tracked as the Actual Cost of Work
Performed (ACWP). The combination of
these three values, arranged according to
planned (BCWS) and actual (BCWP and
ACWP) schedule performance, allows
projects to determine both cost and
schedule variances from their plan.

This traditional earned value tech-
nique, while an effective tool, is often
incomplete because it is planned for the
completion of high-level project tasks

(such as overall design, code, and test), is
tracked only at the project level, and is
reviewed only monthly. Since these large
tasks often require more than one month
to complete, there is a high likelihood of
one or more zero work or flat line zones on
a traditional earned value plan. (Note the
BCWS for October to December and
January to April in Figure 1.) Within
these zero work zones, earned value met-
rics provide no insight into project
progress; this can mask serious problems
for months at a time. In Figure 1, a seri-
ous scheduling problem that was first
encountered by the project in January
does not show up on the earned value
chart until May.

TSP Earned Value Planning
and Tracking
TSP teams create and use earned value
plans very differently from traditional
teams. At the beginning of a TSP project,
the team conducts a launch meeting.
During the initial launch, tasks are defined
at a very high level and estimated using
gross measurements such as lines of code
per hour. A rough plan is drawn up using
these high-level estimates to determine an

Personal Earned Value:
Why Projects Using the Team Software Process

Consistently Meet Schedule Commitments
David R. Webb

Hill Air Force Base

Data from dozens of projects using the Team Software ProcessSM (TSPSM) provide powerful proof of success at consistently
meeting cost and schedule commitments. While disciplined engineering and high quality processes are important factors con-
tributing to these successes, mathematical analyses of project data indicate that the most important factor is the proper man-
agement of earned value techniques at the team member level. In fact, this practice – unique to TSP teams – can produce a
10-times reduction in schedule variance by properly balancing team workload using personal data.

David Tuma
Software Process Dashboard Initiative

$0.00

$200,000.00

$400,000.00

$600,000.00

$800,000.00

$1,000,000.00

$1,200,000.00

Ja
nu

ar
y

M
ar

ch
M

ay Ju
ly

Sep
te

m
be

r

Nov
em

be
r

Ja
nu

ar
y

M
ar

ch
M

ay Ju
ly

BCWS

BCWP

ACWP

Cost
Variance

Project Earned Value at 12 Months

Schedule
Variance

Figure 1: Traditional Earned Value Plan

18 CROSSTALK The Journal of Defense Software Engineering March 2005

idea of the schedule the project will
require to complete the assigned work-
load. Once this is complete, the TSP team
subdivides the work into three-to-four
month phases, breaking the first phase
into detailed subtasks of fewer than 10
hours each. These tasks are assigned to
individuals on the team, and personal
earned value plans are created for each
team member. These personal plans are
then consolidated to create a team plan.

Once the launch is finished, the indi-
viduals immediately begin working to
complete their assigned tasks, tracking
their progress using their personal earned
value plans. One of the SEI’s stated entry
criteria to launching a TSP project is that
team members are trained in the Personal
Software ProcessSM (PSPSM). Among other
things, PSP students learn how to estimate
in pieces, break down their personal work
into measurable tasks, and gather minute-
by-minute data on their progress to create
detailed earned value plans. As a result,
TSP teams have continuous access to real,
measurable data on task completion, dura-
tion, and cost (effort). So, rather than the
stair-step, month-to-month plan shown in
Figure 1, TSP teams produce and live by
much more detailed earned value plans
like the one shown in Figure 2. The
smoother look to this plan is due to a much
higher granularity of measurement than is
practiced or even possible on traditional

earned value projects. Note that there are
basically no zero work zones in Figure 2,
even during the weeks of Christmas and
Independence Day!

Using this level of detail, the team
holds weekly meetings where they review
progress against the personal and team
earned value plans. These weekly reviews
include an examination of the forecast
completion date; if the forecast differs sig-
nificantly from the plan, the team pro-
duces corrective action plans to address
the variance. Since individual team mem-
ber data is available to supplement the
rolled-up team measures, it is immediately
obvious to TSP teams which tasks and
team members are ahead of schedule and
which need assistance. This information
gives the team members the insight, on a
weekly basis, to adjust task assignments,
renegotiate functionality with the cus-
tomer, or replan work to keep the project
on track.

The Significance of Personal
Earned Value
This individual earned value tracking
methodology provides a very sound basis
for planning and managing a team soft-
ware project. Three fundamental behav-
iors are the key to this management
approach:
1. Fine-Grained Estimation (subdividing

project tasks before estimating).

2. Forecast Tracking (monitoring fore-
cast cost and completion date).

3. Workload Balancing (reassigning
workload between team members).
Although these seem to be fairly com-

mon-sense behaviors, they are radically
affected by earned value metrics tracking
at the personal level. At first glance, the
first bullet would appear to be the most
important of the three practices. Most
TSP practitioners would be surprised to
discover that the bullets are actually listed
in increasing order of importance. Workload
balancing, in fact, has the most significant
impact by far on the reduction of project
schedule variances. To understand why, it
is helpful to examine these behaviors in
light of a few simple and well-understood
statistical phenomena.

Estimating Basics1

Estimates, of course, are never perfect,
and estimating errors are inevitable. The
quality of a series of estimates can be
characterized by two metrics: precision
and accuracy. Estimating precision is the
concept most people think of first. For
example, an estimate that falls within 5
percent of the final value could be
described as very precise. Most organiza-
tions have a strong business need to mini-
mize cost and schedule overruns and
overestimates; consequently, they focus on
reducing the size of their estimating error.

Estimating accuracy, on the other
hand, describes the bias in a series of esti-
mates. If an organization were to consis-
tently underestimate project cost, their
estimates would not be considered very
accurate. An even balance between over-
estimates and underestimates would char-
acterize an accurate estimating process.

When estimating a large project, it is
common to begin by breaking the work
down into smaller tasks, estimating those
tasks independently, and summing the
results. Outlining tasks in greater detail
can generally produce a more precise final
estimate. Although this practice intuitive-
ly seems to be correct, statistical concepts
explain this mechanism mathematically.
Imagine, for example, you have a
sequence of independent estimates for
individual subtasks, like those in Table 1.

In Table 1, subtask 1 is estimated
(with 70 percent certainty) to require
between 75 and 125 hours, with 100
hours being the most likely cost. The indi-
vidual task estimates would be summed to
produce a total estimate of 550 hours.
The ranges, however, cannot simply be
summed (which would produce a range of
±125 hours). If these estimates are accu-
rate (balanced between underestimates

$0.00

$200,000.00

$400,000.00

$600,000.00

$800,000.00

$1,000,000.00

$1,200,000.00

Ja
nu

ar
y

M
ar

ch
M

ay Ju
ly

Sep
te

m
be

r

Nov
em

be
r

Ja
nu

ar
y

M
ar

ch
M

ay Ju
ly

BCWS

BCWP

ACWP

Cost
Variance

Earned Value (%)

0%

10%
20%

30%
40%

50%
60%

70%

80%
90%

100%

Oct-2003 Dec-2003 Feb-2004 Apr-2004 June-2004

Plan

Actual

Task Estimate (Hrs) Range (70%)
Subtask 1 100 ±25
Subtask 2 160 ±30
Subtask 3 90 ±20
Subtask 4 200 ±50
Total 550 ±67 (not summed)

Project Earned Value at 12 Months

Schedule
Variance

Table 1: Example Subtask Estimates and Ranges

Team Software Process

Earned Value (%)

0%

10%
20%

30%
40%

50%
60%

70%

80%
90%

100%

Oct-2003 Dec-2003 Feb-2004 Apr-2004 June-2004

Plan

Actual

Task Estimate (Hrs) Range (70%)
Subtask 1 100 ±25
Subtask 2 160 ±30
Subtask 3 90 ±20
Subtask 4 200 ±50
Total 550 ±67 (not summed)

Figure 2: TSP Earned Value Plan

March 2005 www.stsc.hill.af.mil 19

Personal Earned Value:Why Projects Using the Team Software Process Consistently Meet Schedule Commitments

and overestimates), it would be very
unlikely for the actual project to complete
every subtask at either the low or the high
end. As a result, it can be assumed that
over- and under-estimates will partially
cancel each other out. Statistically, the
estimated range for the overall project can
be calculated by squaring each range,
summing those values, then taking the
square root. This approach yields a pre-
diction range of ±67 hours and makes the
range around the sum of the estimates
considerably tighter than the range around
the estimate of each individual task.

This important concept is the basis
for many industrial-strength estimating
practices (including the cost estimation
practices in the TSP). Although its appli-
cation to cost estimation is well known, its
implications for schedule estimation are
much more profound (as will be
explained).

Fine-Grained Estimating
Defines 10-Hour Subtasks
When planning work for the next three- to
four-month project iteration, TSP project
teams create a plan that divides project
work into subtasks of approximately 10
hours each. This behavior can be quickly
understood as an example of the estimating
precision technique described in the previous
section. In practice, however, TSP teams
rarely generate independent estimates for
each subtask, which was a basic assumption
for the sum-squares range calculation.
Instead, larger tasks are estimated, and his-
torical percentages are used to automatical-
ly subdivide those tasks into smaller parts.
As a result, the individual estimates are not
independent, and do not fully benefit from
the statistical mechanisms described.

As mentioned, TSP teams require
software engineers to be trained in the
PSP. While it is true the PSP teaches engi-
neers well-defined, statistically based
methods for producing accurate esti-
mates, TSP teams rarely use those meth-
ods to produce team plans. The PSP
PROxy Based Estimating (PROBE)
method requires abundant historical data
at the personal level; teams rarely have
access to that kind of data when they first
launch. Even after archiving considerable
data, teams generally use historical aver-
ages based on team-level metrics to pro-
duce their plans. Although the co-authors
have collectively participated in more than
a dozen TSP launches (including projects
listed in the SEI studies cited earlier), we
have actually never been part of a TSP
launch that used PROBE methods for
team planning purposes.

Furthermore, the need to produce
such detailed estimates early in the project,
with limited available estimating time, typ-
ically results in estimating errors that are
much larger than those measured by engi-
neers during the PSP training course.
Consider the excerpt of data in Table 2
from a recent TSP project at Hill Air
Force Base.

These subtasks, chosen at random,
demonstrate the significant estimating
errors that occur when work must be bro-
ken down to the 10-hour level during an
initial project launch. The histogram in
Figure 3 shows the estimating errors for
all subtasks completed by the project dur-
ing a 12-month period.

As Figure 3 indicates, estimating errors
at the subtask level are large and wide-
spread. More than two-thirds of the sub-
tasks in this project were misestimated by
50 percent or more. This metrics trend is
not unique to this project. As a result, the
fine-grained estimating performed during
a TSP launch rarely enables teams to see
the cost estimating precision benefits that
would be projected by a sum-squares range
calculation, or by the estimating accuracy
improvements described in PSP studies.

Without question, many TSP teams are
able to finish projects with very small cost
variances. These achievements, however,
are not generally accomplished with the
statistically precise estimating methods
taught in the PSP course. Instead, TSP
teams are able to manage cost variances
with mid-course corrections, enabled by
the forecast tracking behaviors described
in the next section.

In fact, the project whose data is illus-

trated in Table 2 and Figure 3 was highly
successful, completing with a cost vari-
ance of 17 percent (under planned cost)
and schedule variance of only 2 percent
(ahead of schedule). These phenomenal
results were explained by a team member,
who said, “Our project succeeded [on cost
and within schedule] because we made it
succeed.” The subtask data indicate that
these results were not due to precise, fine-
grained task estimates. Instead, it was
accomplished by diligent forecast tracking
and workload balancing.

Fine-grained estimating, then, does
not carry the full statistical significance
suggested by the conventional wisdom. It
does, however, provide an important tan-
gible benefit: Defining tasks at the 10-
hour level allows earned value progress to
be tracked weekly. This helps the team to
maintain a focus on continual progress,
and facilitates early detection of problems.

Forecast Tracking
Reveals Biases Early
Early detection of problems is the pri-
mary goal of forecast tracking. As
described earlier, TSP teams collect
earned value metrics daily and review
them weekly, and produce corrective
action plans when forecast cost and fore-
cast completion dates differ significantly
from the baseline. If these corrective
action plans are unsuccessful, the team
will quickly escalate the issue to manage-
ment and to the customer.

Collecting earned value metrics at the
personal level significantly increases the
granularity of the resulting metrics,
enabling TSP teams to discover cost and

Task Planned Hours Actual Hours Estimating Error %

Subtask 1 4 0.8 80%
Subtask 2 3 1.7 43%
Subtask 3 1.2 4.6 -283%
Subtask 4 10 4.3 57%
Subtask 5 5 7 -40%
Subtask 6 5 14.5 -190%

0

50

100%0%-100%-200%

Estimating Error %

N
um

be
r

of
T

as
ks

Scenario Team Member A Team Member B Unbalanced Optimized
1 Early Early Early Early

Figure 3: Histogram of Task Estimating Errors From Hill Air Force Base TSP Project

7 8 9 15 61 2 3 4

Task Planned Hours Actual Hours Estimating Error %

Subtask 1 4 0.8 80%
Subtask 2 3 1.7 43%
Subtask 3 1.2 4.6 -283%
Subtask 4 10 4.3 57%
Subtask 5 5 7 -40%
Subtask 6 5 14.5 -190%

0

50

100%0%-100%-200%

Estimating Error %

N
um

be
r

of
T

as
ks

Scenario Team Member A Team Member B Unbalanced Optimized
1 Early Early Early Early

2 Early Late Late On time
3 Late Early Late On time
4 Late Late Late Late

Projected Schedule Variance as a Function of Team Size

-200%

-150%

-100%

-50%

0%

50%

100%

0

Number of Team Members

S
ch

ed
u

le
 V

ar
ia

n
ce

With Workload Balancing

With Workload Balancing - 70% Range

No Workload Balancing

No Workload Balancing - 70% Range

Table 2: Example Task Data From Hill Air Force Base TSP Project
Note: Estimating Error % is calculated as (Plan-Actual)/Plan

Team Software Process

20 CROSSTALK The Journal of Defense Software Engineering March 2005

schedule discrepancies much earlier than
usual. Early knowledge of these discrep-
ancies allows the team to renegotiate
scope and/or alter their technical direc-
tion, which can facilitate a significant
reduction in final cost variances.

Although teams will strive for accuracy
in their estimating process, significant esti-
mating biases are still quite common.
Forecast tracking provides a way for teams
to discover these biases early when there is
still time for the project to recover.

Workload Balancing
Workload balancing is the act of reassign-
ing tasks from overburdened team mem-
bers to under-tasked team members. The
goal of workload balancing is to produce
a plan in which all team members finish
their assigned work on approximately the
same date. Workload balancing is uniquely
enabled by earned value tracking at the
personal level.

Of the earned value management
behaviors described, workload balancing
is by far the most important. To under-
stand why, it is helpful to consider the dif-
ference between two metrics:
• Unoptimized Forecast Completion

Date. The date the project is forecast
to complete, if progress continues at
historical rates, and if team members
perform tasks as assigned in the cur-
rent project plan.

• Optimized Forecast Completion

Date. The date the project is forecast to
complete, if progress continues at his-
torical rates, and if tasks are reassigned
to balance the workload optimally.
With earned value schedules for each

individual on a team, it is simple to calcu-
late these two metrics for the overall
team. The optimized date can be calculat-
ed simply by summing up data values to
the team level, and using traditional
earned value equations2. The unoptimized
date can be calculated by looking at the
personal schedules and seeing who finish-
es last.

Examining a very simple case can
illustrate how these forecasts differ.
Consider a team with only two individu-
als, and consider the various scenarios
(shown in Table 3) where the individuals
finish 20 percent early or 20 percent late.

Scenarios 1 and 4 show the presence
of a consistent estimating bias. Workload
balancing does not help in these scenar-
ios, but fortunately these problems can be
detected and corrected via the forecast
tracking activity described in the previous
section. Scenarios 2 and 3 show the sim-
ple effect of workload balancing; in these
scenarios, the projects would finish late,
but workload balancing helps them finish
on time instead.

Table 3 makes clear a very simple
observation: Workload balancing allows
schedule variances to additively cancel
each other out. This is an incredibly

important point because it allows project
schedule variances2 to benefit from the
sum-squares reduction described earlier.

It is also possible to make this obser-
vation mathematically. Consider a project
team with two individuals. Both individu-
als estimate, with 70 percent certainty,
that they will complete the work assigned
to them by the end of September. If the
workload is not balanced, what is the like-
lihood that the overall project will finish
by the end of September?

Since the workload is not reassigned,
we can observe that the project will com-
plete when the last person finishes. Since
there is a 70 percent probability that Team
Member A will finish by the end of
September and a 70 percent probability
that Team Member B will finish by the
end of September, a simple calculation
(0.70 x 0.70 = 0.49) indicates that the
overall probability is only 49 percent. This
probability drops exponentially as individ-
uals are added to the team: with eight
team members, the projected likelihood
of project completion by September 30
drops to less than 6 percent. This dismal
percentage is due to the fact that a prob-
lem encountered by any individual can
affect the project’s completion date.

Of course, a confidence level of 6
percent is not useful when reporting fore-
cast completion dates to management or
to the customer; 70 percent prediction
ranges are more in line with expectations.
To estimate the project completion date
with a team of eight people with 70 per-
cent certainty, you need the 95 percent
ranges for each individual! This graphical-
ly illustrates why most projects don’t fin-
ish on time.

In fairness, the optimized and unopti-
mized metrics here are extremes. Even
with the best workload balancing, a TSP
team will never be able to perfectly opti-
mize their plan; nevertheless, they are
often able to come very close. And even
on a non-TSP team, some workload bal-
ancing is likely to occur. But tracking
earned value at the personal level has an
undeniably significant impact on the
effectiveness of workload balancing. By
applying forecast tracking to the earned
value plans of each individual, teams are
able to notice imbalances early and reas-
sign tasks that have not been started yet.
In contrast, most non-TSP teams do not
discover imbalances until late in the proj-
ect. This awareness often comes too late
to meet the originally committed comple-
tion dates, and the need to transfer
knowledge from the overcommitted indi-
vidual to other team members catastroph-
ically impairs productivity [3]. For the

Figure 4: Simulation-Projected Schedule Variance as a Function of Team Size

7 8 9 15 61 2 3 4

Estimating Error %

N

Scenario Team Member A Team Member B Unbalanced Optimized
1 Early Early Early Early

2 Early Late Late On time
3 Late Early Late On time
4 Late Late Late Late

Projected Schedule Variance as a Function of Team Size

-200%

-150%

-100%

-50%

0%

50%

100%

0

Number of Team Members

S
ch

ed
u

le
 V

ar
ia

n
ce

With Workload Balancing

With Workload Balancing - 70% Range

No Workload Balancing

No Workload Balancing - 70% Range

Table 3: Four Workload Balancing Scenarios

7 8 9 15 61 2 3 4

Task Planned Hours Actual Hours Estimating Error %

Subtask 1 4 0.8 80%
Subtask 2 3 1.7 43%
Subtask 3 1.2 4.6 -283%
Subtask 4 10 4.3 57%
Subtask 5 5 7 -40%
Subtask 6 5 14.5 -190%

0

50

100%0%-100%-200%

Estimating Error %

N
um

be
r

of
T

as
ks

Scenario Team Member A Team Member B Unbalanced Optimized
1 Early Early Early Early

2 Early Late Late On time
3 Late Early Late On time
4 Late Late Late Late

Projected Schedule Variance as a Function of Team Size

-200%

-150%

-100%

-50%

0%

50%

100%

0

Number of Team Members

S
ch

ed
u

le
 V

ar
ia

n
ce

With Workload Balancing

With Workload Balancing - 70% Range

No Workload Balancing

No Workload Balancing - 70% Range

Note: The schedule variances shown are based on a cost estimating error of ± 50% and a weekly task time esti-
mating error of ± 25% (both for 70% certainty ranges).

entire period of the project before the
imbalance is noticed, individual team
members will have been pacing them-
selves, consciously or unconsciously. An
under-tasked team member, seeing that
they are comfortably meeting the dates
required of them, will have most likely
devoted a significant amount of time to
non-project-essential tasks, unaware that
their co-worker needed help. That time
spent on non-essential work can never be
recovered. In contrast, continual work-
load balancing helps to establish a shared
level of urgency among team members.

Analysis With Numerical
Methods
These simple mathematical analyses illus-
trate how unoptimized forecast dates
become exponentially less reliable as indi-
viduals are added to a project. But when a
workload is balanced based on personal
earned value metrics, schedule overruns
and underruns are able to cancel each
other out, resulting in significantly smaller
schedule variances for the overall project.

Using numerical methods, the authors
of this article have succeeded in demon-
strating this fact mathematically [4]. The
results were striking: All other factors
being equal, workload balancing predicted
schedule variances that were orders of
magnitude smaller than the schedule vari-
ances for unbalanced work. Figure 4 illus-
trates the results: With no workload bal-
ancing, a project is more and more likely
to finish behind schedule as team size
grows. In contrast, a project that balances
workload optimally has more opportuni-
ties for workload balancing as team size
grows, increasing the likelihood that the
project will finish on time.

This analysis seems to suggest that
workload balancing, enabled by personal
earned value tracking as practiced in the
TSP, can by itself account for a 90 percent
reduction in the schedule variance of a
project. These incredible results suggest
that personal earned value tracking is pre-
dominately responsible for the tiny schedule
variances seen by TSP projects.

Conclusions
The TSP includes many high-maturity
behaviors that help teams produce superi-
or results. While nearly all of these behav-
iors affect a team’s on-time schedule per-
formance, numerical analysis seems to
indicate that proper application of earned
value at the personal level is the largest
single factor enabling the tiny schedule
variances seen by TSP teams.

Curiously, engineers only receive

about an hour of earned value training in
the PSP class, and they do not typically
use these techniques during the course.
Most engineers do not actually experience
the practical application of earned value
until they start their first TSP project (and
historically there has not been any extra
earned value training at that point)3.

These facts seem to beg these ques-
tions: “Could personal earned value track-
ing be used alone, without other
PSP/TSP techniques, by teams in other-
wise mature organizations?” “ If so, what
are the critical enabling success factors?”
“What results might be expected?”

A six-sigma design of experiments
seems warranted. While one would not
expect to see the quality successes pro-
duced by TSP projects, the authors of this
article feel that targeted earned value
training and proper management support
may allow non-TSP teams to enjoy signif-
icant cost and schedule benefits.u

References
1. Humphrey, Watts S. “Why Big

Software Projects Fail: The 12 Key
Questions.” CrossTalk Mar. 2005

<www.stsc.af.mil/crosstalk/2005/
03/0503 Humphrey.html>.

2. Davis, Noopur, and Julia Mullaney.
The Team Software Process SM (TSP SM)
in Practice: A Summary of Recent
Results. Pittsburgh, PA: Software
Engineering Institute, Sept. 2003.

3. Brooks, Frederick P. The Mythical
Man-Month. 1st ed. Reading, MA:
Addison-Wesley, 1995.

4. Tuma, David A. “A Statistical Model
for Personal Earned Value, and Impli-
cations for Project Planning.” 31 Dec.
2004. <http://processdash.source
forge.net/ev.html>.

Notes
1. This article does not attempt to fully

explain statistical estimating methods.
It only describes these methods at a
high level as background for the fol-
lowing discussion.

2. Variance is used in the project man-
agement sense, not the statistical sense.

3. TSP teams could potentially benefit
from additional earned value training,
to take full advantage of the powerful
tools they have at their disposal.

Personal Earned Value:Why Projects Using the Team Software Process Consistently Meet Schedule Commitments

March 2005 www.stsc.hill.af.mil 21

About the Authors

David Tuma is the lead
developer for the Soft-
ware Process Dashboard
Initiative, creating open
source tools to support
high-maturity software

development processes. He first encoun-
tered open source software as a student at
the Massachusetts Institute of Technolo-
gy, and again later as a captain in the
United States Air Force. As a strong sup-
porter of open source, Tuma has been
developing open source software on his
own time for the past 10 years.

Software Process Dashboard
Initiative
1645 E HWY 193 STE 102
Layton, UT 84040-8525
Fax: (801) 728-0595
E-mail:tuma@users.sourceforge.net

David R. Webb is a sen-
ior technical program
manager for the Software
Division of Hill Air
Force Base in Utah, a Ca-
pability Maturity Model®

for Software Level 5 software organiza-
tion. He is a project management and
process improvement specialist with 17
years of technical, program management,
and process improvement experience
with Air Force software. Webb is a
Software Engineering Institute-author-
ized instructor of the Personal Software
Process, a Team Software Process launch
coach, and he has worked as an Air Force
section chief, Software Engineering
Process Group member, systems soft-
ware engineer and test engineer. He is a
frequent contributor to CrossTalk and
has a bachelor’s degree in electrical and
computer engineering from Brigham
Young University.

OO-ALC/MASM
7278 Fourth ST
Hill AFB, UT 84056
Phone: (801) 777-9737
Fax: (801) 775-3023
E-mail: david.webb@hill.af.mil

Anyone who has been exposed to
Team Software ProcessSM (TSPSM)/

Personal Software ProcessSM (PSPSM)
knows that its life-cycle model is based on
software development, but what about
TSP/PSP for software maintenance? This
article tells how an inexperienced team
created a TSP/PSP life-cycle model for
corrective maintenance that allowed it to
finish well ahead of schedule yielding a 76
percent increase in problems fixed and
reducing defects by 38 percent.

Background
The Naval Air Systems Command’s
(NAVAIR) AV-8B Joint System Support
Activity (JSSA) has successfully applied
TSP/PSP to new software development
and to software maintenance projects for
three years.

In February 2001, AV-8B’s Joint
Mission Planning System (AVJMPS) team
began applying the TSP/PSP traditional
development life-cycle model to the
AVJMPS software development project.

In the spring of 2002, AV-8B’s Mission
Support Computer (MSC) software engi-
neering team began the H2.0 Block
Upgrade maintenance software effort
applying TSP/PSP. Their effort under

H2.0 Block Upgrade was primarily main-
tenance. They found that by adapting the
TSP life-cycle model to better fit mainte-
nance activity, they were able to isolate and
measure rework activities and drive down
defect rates while increasing productivity.

Proxies were used to size each prob-
lem fix in terms of estimated hours
instead of source lines of code (SLOC).
There is typically no correlation between
the solution of the problem and SLOC.
There is a correlation between completion
of the problem and time to fix.

The MSC Software
Maintenance Team
The MSC Operational Flight Program
(OFP), a real-time embedded program
running on a PowerPC processor, pro-
vides mission computer functionality for
the AV-8B Harrier II+. The OFP com-
prises 700,000 SLOC, mostly in C++.

The five-member H2.0 MSC software
engineering team was relatively inexperi-
enced. Two team members had experience
working with the MSC OFP software and
the toolset. One of these two was newly
promoted to the software lead position
having no prior experience in this posi-
tion. Out of the three new team members,
only one was familiar with the toolset, and
none of them were experienced in the
problem domain. The teams primary task-
ing was corrective maintenance (i.e., fixing
software defects).

It was obvious to JSSA management
and the H2.0 software team that the team
required startup time to learn the toolset,
the MSC OFP software, and TSP/PSP.

Maintenance and
Development Life Cycles
Are Not a Perfect Match
The MSC software engineering team
began development with the traditional
development life-cycle phases, shown in
Figure 1, which are supported in TSP/PSP
training and by the TSP/PSP tool. The
team, however, soon realized that this life
cycle did not address problems associated

with software maintenance.
The team found that the TSP tradi-

tional life cycle, as shown in Figure 1, did
not include a phase for problem identifi-
cation. Identifying the problem, recreating
the problem in controlled conditions, and
identifying the solution are critical activi-
ties in the first steps of software mainte-
nance. The ISO [International Organiza-
tion for Standardization]/IEC [Inter-
national Electronical Commission] Stan-
dard 12207 [1] describes these activities in
the Problem Modification and Analysis
step of the maintenance life cycle.

Next, the team noted that most soft-
ware changes did not affect high-level
design, and many did not affect detailed-
level design. Most changes fell into the
corrective maintenance category, resulting
from missing or misinterpreted require-
ments, coding logic errors, or missing
source code.

The team also experienced cases
where finding the correct solution
required iteration through the TSP life-
cycle phases. For example, the proposed
solution might have an unanticipated side
effect, which required iteration back
through design, code, and test. There are
also cases where determining the com-
plete scope of the problem required mul-
tiple probes into the design and code.

The traditional TSP life cycle does not
accommodate iteration. While it is possi-
ble to add iterations through the phases to
one’s plan, the original work plan for
development activity is based on a single
iteration from high-level design through
integration test. Consequently all the
earned value is associated with the origi-
nally planned iteration, and additional iter-
ations show up as unplanned work with
no earned value.

The Lite Life-Cycle Model
Is Born
TSP teaches that your process must be
your own and that TSP can be adapted to
fit the way your organization does busi-
ness. The H2.0 MSC software engineering
team adapted the TSP life cycle to fit their

A TSP Software Maintenance Life Cycle

Chris A. Rickets
Naval Air Systems Command

Team Software ProcessSM (TSPSM) and Personal Software ProcessSM (PSPSM) have always been associated with software devel-
opment, but what about TSP/PSP for software maintenance? This article discusses how TSP/PSP was adapted for use on
a software maintenance project, resulting in a new proxy for estimating maintenance activity and the creation of a TSP soft-
ware maintenance life cycle.

22 CROSSTALK The Journal of Defense Software Engineering March 2005

HLD High-Level Design
HLDINSP High-Level Design

Inspection
DLD Detailed-Level

Design
DLDR Detailed-Level

Design Review
DLDINSP Detailed-Level

Design Inspection
CODE Code
CR Code Review
CODEINSP Code Inspection
COMPILE Compile
UT Unit Test
IT Integration Test
ST System Test

Figure 1: TSP Traditional Development Life
Cycle Phases

March 2005 www.stsc.hill.af.mil 23

team and the maintenance activity.
The H2.0 MSC software engineering

team coined the phrases classic and lite to
describe their software lifecycle models.
The classic life-cycle model is the tradi-
tional TSP development model, while lite
life-cycle model refers to the maintenance
life-cycle model created by the team. The
phases of the lite model, shown in Figure
2, specifically address the shortcomings
noted in the previous section.

The lite life cycle adds phases and activ-
ities specific to software maintenance, and
consolidates phases from the traditional
life-cycle model to allow for iteration. The
lite life cycle preserves review and inspec-
tion activities, although they are less visible
and may be reordered from the traditional
approach. The following paragraphs
explain each of the lite life-cycle phases.
• IDENT. During the identification

phase, the software engineer works
with the systems engineer (SE)1 to ver-
ify the requirements and demonstrate
the problem. Early involvement of the
SE ensures that the problem as speci-
fied in the Problem Report (PR) is cor-
rect. Often, the PR describes symp-
toms rather than identifying the root
cause. The desired solution in the PR
may also be incomplete. Given an
understanding of the problem, the
software engineer then identifies the
cause of failure condition within the
source code and demonstrates the
source code problem and failure to a
peer. If the peer agrees with the soft-
ware engineer that the problem has
been correctly and completely identi-
fied, the software engineer can then
move to the INWRK [in-work] phase.

• INWRK. The in-work phase encapsu-
lates design, code, and unit test to
allow for iteration in the maintenance
environment.

• Design and Design Review. If a
design change is needed, the software
engineer implements the changes and
reviews the changes using his or her
design review checklist. Inspection is
deferred to the INSP [inspection]
phase, except in cases where a sub-
stantial change to the design is
required, or where there are special cir-
cumstances, e.g., a change to a class in
the Common OFP2. The decision to
delay inspection of small, simple
design changes to the INSP phase is
based on several factors. First, the cost
of putting together an inspection
package for a one- to three-line source
code change outweighs the benefit.
Second, the risk of delaying the
inspection has proved to be accept-

able. This risk is mitigated by the
team’s experience that small changes
are typically identified in the IDENT
phase, where a peer has already con-
curred with the change.

• Code and Code Review. Source code
changes are made, based on baseline
versions of the OFP. The software
engineer reviews their changes using a
code review checklist. Code inspection
is deferred to the INSP phase.

• Compile. The source code is com-
piled until all code compiles cleanly.

• Unit Test. Unit testing is then per-
formed. If the fix for the PR fails, the
software engineer continues to solve
the problem, iterating through design,
code, and unit test until a successful
solution is achieved and any negative
side effects have been eliminated.
When the desired results are obtained,
the SE is shown the unit test results as
an additional check that the solution is
correct and complete. This conforms
to the maintenance implementation
ISO/IEC activity described in 5.5.3.2
(b) of Standard 12207 [1]

• INSP. The inspection phase consoli-
dates both design and code inspec-
tions, except in cases where complex
solutions require that design and code
inspections be conducted separately.
The inspection package includes the
inspection log, modified design and
source code files, the PR, a document
describing where changes were made
and why, and a copy of the unit test
plan. The addition of the unit test plan
accords with the maintenance imple-
mentation ISO/IEC activity as
described in 5.5.3.2 (a) of Standard
12207 [1]. The addition of a document
describing where and why changes
were made is a road map for the
inspector. The team made this a
mandatory requirement when it was
found that this information dramati-
cally reduced inspection times.

• IT. Integration test is performed
using a developmental baseline in the
lab environment (i.e., the actual hard-
ware). The software engineer uses the
PR test plan, and the SE may perform
additional tests to verify the correct-
ness and completeness of the fix. If
either the software engineer or the SE
determines that the fix is incomplete,
the software engineer continues to log
his work in this phase. Once the soft-
ware engineer and SE agree that the
fix is correct, the PR is then consid-
ered completed and available for sys-
tem testing; although, there are excep-
tions as indicated under the RA

[rework assessment] and ST [system
test] phases.

• RA. The rework assessment phase is
added to a PR, in the TSP workbook,
when questions arise about a complet-
ed PR that requires the software engi-
neer to investigate and resolve. The
software team found that there was
often considerable time lag between
completion of the IT phase and the
closing of the PR by the SE. The SE
would often have forgotten his or her
initial consultation with the software
engineer or would question whether
the fix addressed something that may
have been overlooked by the require-
ments. These questions would cause
the software engineers to spend a con-
siderable amount of time becoming
reacquainted with a PR completed
back under IT. This phase is used to
capture time spent in determining if a
software problem still exists for the PR
in question. If no problem exists, the
PR is closed by the SE. If a problem is
identified, the ST phase is then entered.

• ST. When a problem is found in sys-
tem test that is related to an allocated
PR, an ST phase is added for that PR.
The software engineer will log his or
her time in this phase until the prob-
lem is resolved. Problems detected
during the system test phase are used
as the quality indicator for the H2.0
team. The team set its quality goal at
having no more than 10% of PR’s
being rejected in system test.
A mapping of the development classic

life-cycle phases to the maintenance lite
life-cycle phases is shown in Figure 3 (see
next page).

Customer’s Perspective on
TSP Maintenance Activities
The direct customer for the software team
is the Block lead and the Integrated
Product Team (IPT) lead. The customer
defines project goals for maintenance
projects and levels of success are estab-
lished during TSP Meeting 1, just as in
development projects. The customer par-
ticipates in launches and postmortems,

IDENT Identification
INWRK In Work
INSP Inspection
IT Integration Test
RA Rework

Assessment
ST System Test

HLD
HLDINSP

IDENT

DLD
DLDR
DLDINSP
CODE
CR
CODEINSP
COMPILE
UT

INWRK

INSP
IT IT

RA
ST ST

Figure 2: TSP Maintenance Life Cycle Phases

A TSP Software Maintenance Life Cycle

just as in development projects.
“TSP has brought credibility to esti-

mates and commitments to perform
worthwhile in a maintenance environ-
ment,” said AV-8B JSSA’s IPT Lead
Dwayne Heinsma. “We are no longer
questioned on the basis of estimating our
requirements because we have the data
and the performance to back it up.”

Heinsma continued, “TSP has also
contributed significantly to our ability to
establish organizational improvement
goals in the maintenance area. We did not
have the historical measures that baselined
our performance previously and today we
now have a process by which we update
our organizational performance baseline
using project postmortem data.”

Heinsma also stated, “Today, there is a
strong push from NAVAIR leadership to
establish improvement goals (productivity,
quality, cost, and schedule) and show
progress toward meeting those goals. With
TSP, we have established the baseline; we

have the improvement goals and the data
showing progress toward the goals. If we
are not meeting the goals, TSP provides us
insight into what is holding us back, and
we can focus on those elements that will
help us improve most significantly.”

The H4.0 Block Lead Greg Janson for
the current software maintenance effort
added, “I feel that TSP is worthwhile from
a customer point of view. TSP provides a
good quantitative tool for performance
assessment. Qualitatively, it creates a solid
basis for estimating that is difficult to
question.”

Results
The H2.0 team finished their tasking well
ahead of schedule. In fact, the H2.0 team
was able to reassess how many additional
PR’s could be solved in the time remaining
on the project. The team initially estimat-
ed 102 PR’s over a two-year period. The
team actually completed over 180 PR’s.
This is a considerable accomplishment,
given the team’s relative lack of domain
knowledge and the fact that the first two
and one-half months of the project were
spent completing TSP training. During
this time, the H2.0 team also developed
and documented processes for the H2.0
software development effort. The team
came very close to their quality goal,
achieving a 13 percent rejection rate in
system test.

The AV-8B software team is now
working on the next block upgrade to the
AV-8B MSC OFP. They continue to refine
the lite life cycle to improve software qual-
ity. In this block upgrade, their goal is to
reduce the rework time measured in the
RA phase, and to refine their defect log-
ging to yield more fine-grained informa-
tion earlier in the life cycle.u

Reference
1. ISO [International Organization for

Standardization]/IEC [International
Electrotechnical Commission] 12207.
ISO/IEC 12207: Information Tech-
nology – Software Life-Cycle Proc-
esses. 1st ed. ISO/IEC, 1995.

Notes
1. At the AV-8B JSSA, the systems engi-

neering team is responsible for system
and software requirements.

2. Common OFP is a basic set of soft-
ware built upon for different aircraft
with common fundamental require-
ments but differing missions and/or
systems.

Team Software Process

24 CROSSTALK The Journal of Defense Software Engineering March 2005

HLD
HLDINSP

IDENT

DLD
DLDR
DLDINSP
CODE
CR
CODEINSP
COMPILE
UT

INWRK

INSP
IT IT

RA
ST ST

Figure 3: Mapping from Development to
Maintenance Life Cycle About the Author

Chris A. Rickets is a
computer scientist in the
software engineering
group at the AV-8B Joint
System Support Activity.
He has been working on

Embedded Avionics Systems for the past
14 years. He was the H2.0 Harrier Block
Upgrade Software Lead and is currently
working on the H4.0 Harrier Block
Upgrade. Rickets has both a Bachelor of
Science and Master of Science in com-
puter science from California State
University Chico.

CMDR, NAWCWD
41K300D MS 2004
507 E Corsair ST
China Lake, CA 93555-6110
Phone: (760) 939-5838
E-mail: chris.rickets@navy.mil

Software Process
Dashboard Initiative
http://processdash.sourceforge.net
The Software Process Dashboard Project is an open-source ini-
tiative to create a Personal Software ProcessSM (PSPSM)/Team
Software ProcessSM (TSPSM) support tool. The Process
Dashboard is an existing support tool originally developed in
1998 by the U.S. Air Force, and has continued to evolve under
the open-source model. It is freely available for download under
the conditions of the Gnu’s Not Unix Public License. The
Process Dashboard supports data collection, planning, tracking,
data analysis, and data export. The major strengths of the
Process Dashboard are ease of use, flexibility/extensibility, plat-
form independence, and price. The Team Process Dashboard is
currently under development.

Software Engineering Institute
www.sei.cmu.edu
The Software Engineering Institute (SEISM) is a federally fund-
ed research and development center sponsored by the
Department of Defense to provide leadership in advancing the
state of the practice of software engineering to improve the
quality of systems that depend on software. SEI helps organiza-
tions and individuals improve their software engineering man-
agement practices. The site features complete information on
models the SEI is currently involved in developing, expanding,
or maintaining, including the Team Software ProcessSM,
Personal Software ProcessSM, Capability Maturity Model®

Integration, Capability Maturity Model® for Software, Software
Acquisition Capability Maturity Model®, Systems Engineering
Capability Maturity Model®, and more.

WEB SITES

March 2005 www.stsc.hill.af.mil 25

Open Forum

Software project failures are common,
and the biggest projects fail most often.

There are always many excuses for these
failures, but there are a few common symp-
toms. Some years ago, before the invention
of the Capability Maturity Model® (CMM®)
and CMM IntegrationSM (CMMI®) the prin-
cipal problem was the lack of plans [1, 2].
In the early years, I never saw a failed proj-
ect that had a plan, and very few unplanned
projects were successful.

The methods defined for CMM and
CMMI Levels 2 and 3 helped to address
this problem. As the Standish data in
Figure 1 shows, the success rate for soft-
ware organizations improved between 1994
and 2000, and much of this improvement
was due to more widespread use of sound
project management practices [3]. Still,
with less than 30 percent of our projects
successful, those of us who are software
professionals have little to be proud of.

The definition of a successful project
is one that completed within 10 percent or
so of its committed cost and schedule and
delivered all of its intended functions.
Challenged projects are ones that were
seriously late or over costs or had reduced
functions. Failed projects never delivered
anything. Figure 2 (see page 26) shows
another cut of the Standish data by project
size. When looked at this way, half of the
smallest projects succeeded, while none of
the largest projects did. Since large proj-
ects still do not succeed even with all of
the project management improvements of
the last several years, one begins to wonder
if large-scale software projects are inher-
ently unmanageable.

Question 1:Are All Large
Software Projects
Unmanageable?
There are some large, unprecedented proj-
ects that are so risky that they would like-

ly be challenged under almost any man-
agement system. But some large projects
have succeeded. Two examples are the
Command Center Processing and Display
System Replacement (CCPDS-R) project,
described by Walker Royce, and the oper-
ating system (OS)/360 project in my for-
mer group at IBM [4, 5]. The CCPDS-R
was a U.S. Air Force installation at
Cheyenne Mountain in Colorado. It had
about 100 developers at its peak. The
OS/360 was the operating system to sup-
port the IBM 360 line of computers, and
included the control program, data man-
agement, languages, and support utilities.
Its development team consisted of about
3,000 software professionals.

Both of these projects placed heavy
emphasis on planning, and both adopted
an evolutionary development strategy with
multiple releases and phased specifica-
tions. Both projects also took a somewhat
unconventional approach to motivating
team member performance. For CCPDS-
R, management distributed 50 percent of
the project award fee to the development
team members. This built their loyalty and
commitment to success, and maintained
team motivation throughout the job. The
CCPDS-R project was delivered on sched-
ule and within contracted costs.

By the time I took over the OS/360
project some years ago, we had all learned
that the proper strategy for building big
software-intensive systems was to break
the job into as many small incremental
releases as practical. Since this strategy
required organization-wide coordination,
our very first action was to have all the
development teams in all the involved lab-
oratories produce their own plans and
coordinate them through a central build-
and-release group. Then, we based the
company’s commitments on the dates that
the teams provided. In no case did IBM

commit to any date that was not support-
ed by a plan that had been developed by
the team that was to do the work.

These plans extended through 19
releases over a period of 30 months. Most
importantly, they provided the focus we all
needed to coordinate the work of 15 lab-
oratories in six countries and to promptly
recognize and address the myriad prob-
lems that inevitably arose. The developers
were personally committed to their sched-
ules, and they delivered every one of these
releases on or ahead of the committed
schedules. So, at least based on this limit-
ed sample, some large software projects
can be managed successfully. However,
because the success rate is so low, large-
scale software projects remain a major
project management challenge.

Question 2:Why Are Large
Software Projects Hard to
Manage?
While large software projects are
undoubtedly hard to manage, the key
question is “Why?”

Historically, the first large-scale man-
agement systems were developed to man-
age armies. They were highly autocratic,
with the leader giving orders and the

Why Big Software Projects Fail:
The 12 Key Questions

Watts S. Humphrey
The Software Engineering Institute

In spite of the improvements in software project management over the last several years, software projects still fail distressingly
often, and the largest projects fail most often. This article explores the reasons for these failures and reviews the questions to
consider in improving your organization’s performance with large-scale software projects. Not surprisingly, considering these
same questions will help you improve almost any large or small project with substantial software content. The principal ques-
tions concern why large software projects are hard to manage, the kinds of management systems needed, and the actions
required to implement such systems. In closing, the author cites the experiences of projects that have used the methods described
and cites sources for further information on introducing the required practices.

1994 1996 1998 2000

0

10

20

30

40

50

60

P
er

ce
n

t

YearSucceeded
Failed
Challenged

Figure 1: Project Success History [3]

troops following. Over time, work groups
were formed for major construction proj-
ects such as temples, palaces, fortifications,
and roads. The laborers were mostly slaves,
and again, the management system was
highly autocratic. The workers did what
they were told or they were punished.

This army-like structure was essentially
the only management system for many
years until the Greek city-states introduced
democratic political systems. However,
these democratic principles were primarily
used for governing, not for project man-

agement. Somewhat later, a totally differ-
ent management system was used to build
cathedrals. This work was largely done by
volunteer artisans who managed them-
selves under the guidance of a master
builder. Since building a cathedral often
took 50 years or more, the cathedral-man-
agement system is not a good model for
modern large-scale software projects.
However, it did produce some beautiful
results. This cathedral-building manage-
ment system was not used for anything but
cathedrals for many years, but it has
recently had some success as the guiding
principle for the open source software
development community [6].

The next major management innova-
tion was the factory. Factories started pro-
ducing clothing and were soon used for
making all kinds of goods. Again, howev-
er, the factory management system was
autocratic, with management directing
and workers doing. While the factory
model improved productivity, it was not
without its problems. The early work of
Frederick Winslow Taylor about 100 years
ago and the more recent work of W.E.
Deming, J.M. Juran, and others has
improved the effectiveness of this model
by redefining the role of the worker. The
modern view is that to do quality work for
predictable costs and schedules, workers
must be treated as thinking and feeling
participants rather than merely as unfeel-
ing drudges. However, to date, these
methods have had limited application to
software [7, 8, 9].

The factory/army system has persisted
and now characterizes the modern corpo-
rate structure where senior management
decides and everybody else follows. Many
managers would contend that they listen
to their people while making decisions.
However, employees generally view cor-
porate management as autocratic and few

feel that they could influence a senior
manager’s decisions. Some managers even
argue that autocratic management is the
only efficient style for running large proj-
ects and organizations. Democratic
debates would take too long and decisions
would not be made by the most important
or knowledgeable people.

Regardless of the validity of this view,
the hierarchical management style does
not work well for managing large software
projects. Unfortunately, except for the
cathedral-building system, there is no
other proven way to manage large-scale
work. So, if we want to have successful
large-scale software projects, we must
develop a project management system that
is designed for this purpose.

Question 3:Why Is Autocratic
Management Ineffective for
Software?
Before developing a new management sys-
tem, we should first understand why the
current one does not work. To answer this
question, we must explore the nature of
software work and how it differs from
other, more manageable work. Software
and software-like work have characteristics
that are particularly difficult to manage.
From a management perspective, the prin-
cipal difference between managing tradi-
tional hardware projects and modern soft-
ware work concerns management visibility.

With manufacturing, armies, and tradi-
tional hardware development, the man-
agers can walk through the shop, battle-
field, or lab and see what everybody is
doing. If someone is doing something
wrong or otherwise being unproductive,
the manager can tell by watching for a few
minutes. However, with a team of soft-
ware developers, you cannot tell what they
are doing by merely watching. You must
ask them or carefully examine what they
have produced. It takes a pretty alert and
knowledgeable manager to tell what soft-
ware developers are doing. If you tell
them to do something else or to adopt a
new practice, you have no easy way to tell
if they are actually working the way you
told them to work.

Some might argue that hardware work
is not actually that different from software
work and that, at least for some hardware
tasks and most system engineering jobs,
the work is equally opaque to manage-
ment. This is certainly true, particularly
when the hardware engineers are produc-
ing microcode, using hardware design lan-
guages, or working with simulation or lay-
out tools. Today, as modern technical spe-
cialties increasingly overlap, many hard-

26 CROSSTALK The Journal of Defense Software Engineering March 2005

Open Forum

0 10 20 30 40 50 60

Percent Success - %

< 0.75

0.75 - 1.5

1.5 - 3.0

3.0 - 6.0

6.0 - 10.0

10.0 +
P

ro
je

ct
 S

iz
e

$1
,0

00
,0

00

Figure 2: Success Rate by Project Size [3]

Large-scale management systems were eventually
applied to major construction projects. The system
was highly autocratic; workers did what they were
told or they were punished.

The first large-scale management systems were devel-
oped for armies. Leaders gave orders and troops fol-
lowed. With training and discipline, this approach
could work even amid chaos and confusion.

Why Big Software Projects Fail:The 12 Key Questions

March 2005 www.stsc.hill.af.mil 27

ware projects now share the same charac-
teristics as large software projects. When
hardware development and system-engi-
neering work have the characteristics of
software work, they should be managed
like software. However, since these sys-
tems groups generally tend to be relatively
small, they do not yet present the same
project-manageability problems as large-
scale software.

Question 4:Why Is
Management Visibility a
Problem for Software?
Since most software developers are dedi-
cated and hard-working professionals,
why is management visibility a problem?

The problem is that the manager can-
not tell where the project stands. To man-
age modern large-scale technical work,
you must know where the project stands,
how rapidly the work is being done, and
the quality of the products being pro-
duced. With earlier hardware-develop-
ment projects, all of this information was
more-or-less visible to the manager, while
with modern software and systems proj-
ects it often is not.

This is a problem because large devel-
opment projects, whether hardware or
software, always run into problems, and
every problem involves more work. While
developers can invariably overcome small
problems, every problem adds to the
workload and delays the job. Each little
slip is generally manageable by itself, but
over time, problems add up, and sooner or
later the project is in serious trouble.

The project manager’s job is to identi-
fy these small daily slips and to take steps
to counter them. As Fred Brooks said,
“Projects slip a day at a time” [10]. With
traditional hardware projects, the manager
could usually see these one- and two-day
slips and could do something about them.
With modern, complex, software-inten-
sive systems, the daily schedule slips are
largely invisible. So, with large-scale soft-
ware work, the managers generally do not
see the schedule problem until it is so big
that it is obvious. Then, however, it is usu-
ally too late to do much about it.

Question 5:Why Can’t
Managers Just Ask the
Developers?
If the managers cannot see where the
developers stand, why not just ask them?

Most developers would be glad to tell
their managers where they stood on the
job. The problem is that, with current
software practices, the developers do not
know where they stand any more than the

managers do. The developers know what
they are doing, but they do not have per-
sonal plans, they do not measure their
work, and they do not track their progress.
Without these practices to guide them,
software people do not know with any
precision where they are in the job. They
could tell the manager that they are pretty
close to schedule or 90 percent done with
coding, but the fact is that they do not
really know. Again, as Brooks said, “...pro-
grammers generally think that they are 90
percent through with the coding for more
than half of the project” [10].

Unless developers plan and track their
personal work, that work will be unpre-
dictable. Furthermore, if the cost and
schedule of the developers’ personal work
is unpredictable, the cost and schedule of
their teams’ work will also be unpre-
dictable. And, of course, when a project
team’s work is unpredictable, the entire
project is unpredictable. In short, as long
as individual developers do not plan and
track their personal work, their projects
will be uncontrollable and unmanageable.

Anyone who has managed software
development will likely argue that this is
an overstatement. Although you may not
know precisely where each developer’s
work stands, you can usually get a general
idea. Since about a third to a half of the
small projects are successful when the
developers do not plan and track their per-
sonal work, such projects can be managed.
So why should the lack of sound personal
software practices be a problem for large
projects?

It is true that software projects are not
totally unmanageable. As Figures 1 and 2
show, the worst problem is with the very
large software projects. On small projects,
some uncertainty about each team mem-
ber’s status is tolerable. However, as proj-
ects get bigger and communications lines
extend, precise status information
becomes more important. Without hard
data on project status, people communi-
cate opinions, and their opinions can be
biased or even wrong. When filtered
through just a few layers of management,
imprecise project status reports become
so garbled that they provide little or no
useful information. Then these large-scale
software projects end up being run with
essentially no management visibility into
their true status, issues, and problems.

Question 6:Why Do Planned
Projects Fail?
Today, with CMM and CMMI, most large
software projects are planned, and they
use methods like Program and Evaluation

and Review Technique (PERT) and
earned value to track progress. Why is that
not adequate?

The problem is with the imprecision
and inaccuracy of most software project
plans. Most projects have major mile-
stones such as specifications complete,
design complete, code complete, and the
like. The problem is that on real software
projects, few of these high-level tasks
have crisp completion dates. The require-
ments work generally continues through-
out design and even into implementation
and test; coding usually starts well before
design completion and continues through
most of testing.

A few years ago, the management of a
large software organization asked me to
review their largest project. They told me
that the code completion milestone had
already been met on schedule. However, I
found that very little code had actually
been released to test. When I met with the
development teams, they did not know
how much code they had written or what
remained to be done. It took a full week to
get a preliminary count, and it was a
month before we got accurate data. It was
another 10 months before all of the cod-
ing was actually completed. It is not that
developers lie, just that without objective
data, they have no way to know precisely
where they stand. When they are under
heavy schedule pressure, people try to
respond. Since we all know that the bear-
er of bad news tends to be blamed, no
one dares to question the schedule and
everyone gives the most optimistic story
they can.

Work on cathedrals was done by volunteer artisans
who managed themselves under the guidance of a
master builder. This approach has had some suc-
cess in open source software development.

Open Forum

28 CROSSTALK The Journal of Defense Software Engineering March 2005

Question 7:Why Not Just
Insist on Detailed Plans?
Why cannot management just insist on
more detailed plans? Then they could have
more precise measures of project status.

While this would seem reasonable, the
issue is, “Whose plans are they?” Detailed
plans define precisely how the work is to
be done. When the managers make the
plans, we have the modern-day equivalent
of laborers building pyramids. The man-
agers tell the workers what to do and how
to do it, and the workers presumably do as
they are told.

While this has been the traditional
approach for managing labor, it has
become progressively less effective for
managing high-technology work, particu-
larly software. The principal reason is that
the managers do not know enough about
the work to make detailed plans. That is
why many of these software-intensive
projects typically have very generalized
plans. This provides the developers with
the flexibility they need to do creative
work in the way that they want to. The
current system is therefore the modern
equivalent of the cathedral-building sys-
tem where the developers act like artisans.
The unfortunate consequence is that,
without Herculean effort, it often seems
that the natural schedule for such projects
could easily approach 50 years.

Question 8:Why Not Tell
the Developers to Plan
Their Work?
The obvious next step would be to tell the
developers to make their own detailed
plans. Why would this not work?

There are three problems. First, most
developers do not want to make plans;
they would rather write programs. They
view planning as a management responsi-
bility. Second, if you told them to make
plans, they would not know how to do it.
Few of them have the skill and experience
to make accurate or complete plans.
Finally, making accurate, complete, and
detailed plans means that the developers
must be empowered to define their own
processes, methods, and schedules. Few
managers today would be willing to cede
these responsibilities to the software
developers, at least not until they had evi-
dence that the developers could produce
acceptable results.

Question 9: How Can We Get
Developers to Make Good
Plans?
It seems that the problem of effectively

managing large software projects boils
down to two questions: How can we get
the software developers and their teams to
properly make and faithfully follow
detailed plans, and how can we convince
management to trust the developers to
plan, track, and manage their own work?

To get the developers to make and fol-
low sound personal plans, you must do
three things: provide them with the skills
to make accurate plans, convince them to
make these plans, and support and guide
them while they do it.

Providing the skills is just a question of
training. However, once the developers
have learned how to make accurate plans
and to measure and track their work
against these plans, they usually see the
benefits of planning and are motivated to
plan and track their own and their team’s
work. So, it is possible that developers can
be taught to plan and, once they learn
how, they are generally willing to make and
follow plans [11].

Question 10: How Can
Management Trust Developers
to Make Plans?
This is the biggest risk of all: Can you
trust developers to produce their own
plans and to strive for schedules that will
meet your objectives?

This question gets to the root of the
problem with autocratic management
methods: trust. If you trust and empower
your software and other high-technology
professionals to manage themselves, they
will do extraordinary work. However, it
cannot be blind trust. You must ensure
that they know how to manage their own
work, and you must monitor their work to
ensure that they do it properly. The prop-
er monitoring attitude is not to be dis-
trustful, but instead, to show interest in
their work. If you do not trust your peo-
ple, you will not get their whole-hearted
effort and you will not capitalize on the
enormous creative potential of cohesive
and motivated teamwork. It takes a leap of
faith to trust your people, but the results
are worth the risk.

Question 11:What Are the
Risks of Changing?
Every change involves some risk.
However, there is also a cost for doing
nothing. If you are happy with how your
large software projects are performing,
there is no need to change. However, few
managers or professionals are comfort-
able with the current state of software
practice, particularly for large-scale proj-
ects. So, there are risks to changing and

risks to not changing. The management
challenge is to balance these risks before
deciding what to do.

There are two risks to changing to a
new management system for large-scale
software projects. First, it costs time and
money to train the developers to plan and
track their work and to train the managers
to use a new management system. Then
comes the risk of using these methods on
a real project. While you will see some
early benefits, you will not know for sure
whether this new management system is
truly effective for you until the first proj-
ect is completed and you can analyze the
results.

This brings up a related and even more
difficult problem: On large multi-year
projects, there is not time to run pilots.
You must pick a management strategy and
go with it. However, since almost all large
software-intensive projects are now failing
anyway, the biggest risk is not changing.
Perhaps the biggest shock for most man-
agers is realizing that they are part of the
problem, and that they have to change
their behavior to get the kind of large-sys-
tem results they want.

These problems are common to all
change efforts. The way to manage these
problems is to examine the experiences of
others and to minimize your exposure by
carefully planning your change effort and
getting help from people who have
already used the methods you plan to
introduce. Of course the alternative is to
hope that things will get better without
any changes. With this choice, however,
your large-systems projects will almost
certainly continue to perform much as
they have in the past.

Question 12:What Has Been
the Experience So Far?
The Software Engineering Institute
(SEISM) has developed a method called the
Team Software ProcessSM (TSPSM) that fol-
lows the concepts described in this article
[11]. With the TSP1, if you properly train
and support your development people and
if you follow the SEI’s TSP introduction
strategy, your teams will be motivated to
do the job properly. The team members’
personal practices will be defined, meas-
ured, and managed; team performance
will also be defined, measured, and man-
aged; and the project’s status and progress
will be precisely reported every week.
Although this will not guarantee a suc-
cessful project, these practices have
worked for the several dozen projects that
have tried them so far.

Moreover, there is one caveat. These

Why Big Software Projects Fail:The 12 Key Questions

March 2005 www.stsc.hill.af.mil 29

practices have proven effective for teams
of up to about 100 members, as well as
for teams composed of multiple hard-
ware, systems, and software professionals.
They have even worked for distributed
teams from multiple geographic locations
and organizations. Although these meth-
ods should scale up to very large projects,
the TSP has not yet been tried with proj-
ects of over 100 professionals. I know
from personal experience, however, that
these practices will address many of the
problems faced by the managers of soft-
ware organizations of several thousand
developers.

The other articles in this issue
describe the TSP experiences of several
organizations. They describe how these
practices have worked on various kinds
of projects and how they could help your
organization.u

Acknowledgements
Many people have participated in the work
that led to this article, so I cannot thank
them all personally. However, without
their willingness to try new methods and
to take the risks that always accompany
change, this work would not have been
possible. So, to everyone who participated
in the early CMM and CMMI work and to
all of those who have learned and used the
Personal Software ProcessSM and TSP, you
have my profound gratitude. I have also
had the advice and support of several
people in writing this article. My special
thanks go to Dan Burton, Noopur Davis,
Bill Peterson, Marsha Pomeroy-Huff, and
Walker Royce.

References
1. Humphrey, Watts S. Managing the

Software Process. Reading, MA:
Addison-Wesley, 1989.

2. Chrissis, Mary Beth, Mike Konrad, and
Sandy Shrum. CMMI – Guidelines for
Process Integration and Process
Improvement. Reading, MA: Addison
Wesley, 2003.

3. The Standish Group International,
Inc. Extreme Chaos. The Standish
Group International, Inc., 2001.

4. Royce, Walker. Software Project
Management, A Unified Framework.
Reading, MA: Addison-Wesley, 1998.

5. Humphrey, Watts S. “Reflections on a
Software Life.” In the Beginning,
Recollections of Software Pioneers.
Robert L. Glass, Ed. Los Alamitos,
CA: IEEE Computer Society Press,
1998.

6. Raymond, Eric S. The Cathedral and
the Bazaar. Cambridge, MA: O’Reilly
Publishers, 1999.

7. Deming, W. Edwards. The New
Economics for Industry, Government,
Education. 2nd ed. The MIT Press,
Cambridge, MA, 2000.

8. Juran, J.M., and Frank M. Gryna.
Juran’s Quality Control Handbook,
Fourth Edition. New York: McGraw-
Hill Book Company, 1988.

9. Taylor, Frederick Winslow. The
Principles of Scientific Management.
New York: Harper and Row,
Publishers, Inc., 1911.

10. Frederick P. Brooks. The Mythical
Man-Month. Reading, MA: Addison
Wesley, 1995.

11. Humphrey, Watts S. Winning With
Software: An Executive Strategy.
Reading, MA: Addison-Wesley, 2002.

Note
1. The Software Engineering Institute

offers courses and transition services
to help organizations introduce the
TSP. Additional information is avail-
able at <tsp@sei.cmu.edu> or at
<www.sei.cmu.edu/tsp>.

About the Author

Watts S. Humphrey
joined the Software En-
gineering Institute (SEISM)
of Carnegie Mellon
University after his
retirement from IBM in

1986. He established the SEI’s Process
Program and led development of the
Software Capability Maturity Model®,
the Personal Software ProcessSM, and the
Team Software ProcessSM. During his 27
years with IBM, he managed all IBM’s
commercial software development and
was vice president of Technical
Development. He holds graduate
degrees in physics and business adminis-
tration. He is an SEI Fellow, an
Association for Computing Machinery
member, an Institute of Electrical and
Electronics Engineers Fellow, and a past
member of the Malcolm Baldrige
National Quality Award Board of
Examiners. He has published several
books and articles and holds five
patents.

Carnegie Mellon University
4500 Fifth AVE
Pittsburgh, PA 15213-2612
Phone: (941) 924-4169
Fax: (941) 925-1573
E-mail: watts@sei.cmu.edu

Get Your Free Subscription

Fill out and send us this form.

OO-ALC/MASE

6022 Fir Ave

Bldg 1238

Hill AFB, UT 84056-5820

Fax: (801) 777-8069 DSN: 777-8069

Phone: (801) 775-5555 DSN: 775-5555

Or request online at www.stsc.hill.af.mil

NAME:__

RANK/GRADE:___

POSITION/TITLE:__

ORGANIZATION:___

ADDRESS:__

__

BASE/CITY:__

STATE:___________________________ZIP:___________________________________

PHONE:(_____)___

FAX:(_____)___

E-MAIL:__

CHECK BOX(ES) TO REQUEST BACK ISSUES:
OCT2003 c INFORMATION SHARING

NOV2003 c DEV. OF REAL-TIME SW
DEC2003 c MANAGEMENT BASICS

JAN2004 c INFO FROM SR. LEADERSHIP

MAR2004 c SW PROCESS IMPROVEMENT

APR2004 c ACQUISITION

MAY2004 c TECH.: PROTECTING AMER.
JUN2004 c ASSESSMENT AND CERT.
JULY2004 c TOP 5 PROJECTS

AUG2004 c SYSTEMS APPROACH

SEPT2004 c SOFTWARE EDGE

OCT2004 c PROJECT MANAGEMENT

NOV2004 c SOFTWARE TOOLBOX

DEC2004 c REUSE

JAN2005 c OPEN SOURCE SW
FEB2005 c RISK MANAGEMENT

To Request Back Issues on Topics Not
Listed Above, Please Contact Karen
Rasmussen at <stsc.customerservice@
hill.af.mil>.

30 CROSSTALK The Journal of Defense Software Engineering March 2005

Departments

BACKTALK

March 2005 www.stsc.hill.af.mil 31

Welcome to “Backfire,” the interview
within a journal where we cross-

examine popular icons for software truth.
This month we have Col. Nathan R.
Jessep, former commanding officer,
Marine Ground Forces, Guantanamo Bay,
Cuba, from the movie “A Few Good
Men.” After a dishonorable discharge, Mr.
Jessep has started a new career as a Team
Software ProcessSM (TSPSM) Launch Coach.

Petersen: Welcome Mr. Jessep.
Jessep: Colonel.

Petersen: What’s that?
Jessep: I would appreciate it if you
would address me as Colonel or Sir. I
believe I have earned it.

Petersen: OK. Colonel, let us focus on
your new career. Why did you imple-
ment Personal Software ProcessSM

(PSPSM) and TSP on your project?
Jessep: I felt that our agile developers
might be in danger without disciplined
measurement.

Petersen: Grave danger?
Jessep: Is there another kind?

Petersen: Is it true you implemented
TSP to drive out agile developers?
Jessep: No, I specifically gave orders
for project managers to coddle devel-
opers with agile tendencies.

Petersen: Any chance they ignored that
order?
Jessep: Ignored the order?

Petersen: Any chance they forgot
about it?
Jessep: No.

Petersen: Any chance they left your
office and thought, “The old man is
wrong?”
Jessep: Have you ever spent time in a
TSP unit, son?

Petersen: No, sir.

Jessep: Ever calculated earned value?
Petersen: No, sir.

Jessep: Ever put your project in anoth-
er man’s hands; ask him to put his proj-

ect in yours?
Petersen: No, sir.

Jessep: We follow processes, son. We
follow processes or projects die. It is
that simple. Are we clear?
Petersen: Yes, sir.

Jessep: Are we clear!
Petersen: Crystal.

Petersen: Colonel, if you have sound
processes and developers always follow
those processes, why did you order
managers to coddle agile programmers?
Why the extra order?
Jessep: The agile developers were sub-
standard programmers –

Petersen: But that is not what you said.
You said your agile developers might be
in danger without disciplined measure-
ment. I said, ‘Grave danger.’ You said –
Jessep: I know what I said.

Petersen: Then why the order sir?
Jessep: Sometimes men take matters
into their own hands.

Petersen: No, sir. You made it clear
that your men never take matters into
their own hands. Your men follow
processes or projects die. Therefore,
the project should not have been in any
danger, Colonel.
Jessep: You pretentious wimp. You
want answers?

Petersen: I think I am entitled to them.
Jessep: You want answers!

Petersen: I want the truth.
Jessep: You can’t handle the truth!

Jessep: Son, we live in a world run by
software and that software has to be
developed by men with discipline. Who
is going to do it? You, Petersen? Bill
Gates? I have a greater responsibility
than you can possibly fathom. You
weep for agile developers and you curse
PSP. You have that luxury. You have the
luxury of not knowing what I know:
That the agile developers’ dismissal,
while tragic, probably saved that project
and my existence, while grotesque and
incomprehensible to you, saves projects.

You don’t want the truth. Because
deep down, in places you don’t talk
about at parties, you want me develop-
ing software. You need my software. We
use words like process, measurement,
maturity … we use these words as the
backbone of a life spent developing
software. You use them as a punch line.

I have neither the time nor the incli-
nation to explain myself to a man who
rises and sleeps under the blanket of
the very software I provide, and then
questions the manner in which I pro-
vide it. I would prefer you just said
thank you and went on your way.
Otherwise, I suggest you pick up a key-
board and code a module. Either way, I
don’t give a darn what you think you are
entitled to.

Petersen: Did you order their dismissal?
Jessep: I did my job and I would do it
again.

Petersen: Did you order their dismissal!
Jessep: You’re darn right I did!

OK, thank you, Colonel Jessep. Join
us next time when “Backfire” cross-
examines the cast of Seinfeld on capa-
bility maturity models.

— Gary A. Petersen
Shim Enterprise, Inc.

A Few Good Launch Coaches

Can You BackTalk?

Here is your chance to make your
point, even if it is a bit tongue-in-
cheek, without your boss censoring
your writing. In addition to accepting
articles that relate to software engineer-
ing for publication in CrossTalk, we
also accept articles for the BackTalk
column. BackTalk articles should
provide a concise, clever, humorous,
and insightful perspective on the soft-
ware engineering profession or indus-
try or a portion of it. Your BackTalk
article should be entertaining and
clever or original in concept, design, or
delivery. The length should not exceed
750 words.

For a complete author’s packet
detailing how to submit your
BackTalk article, visit our Web site at
<www.stsc.hill.af.mil>.

CrossTalk / MASE
6022 Fir AVE
BLDG 1238
Hill AFB, UT 84056-5820

PRSRT STD
U.S. POSTAGE PAID

Albuquerque, NM
Permit 737

Co-Sponsored by
U.S. Air Force

Air Logistics Centers
MAS Software Divisions

Software Engineering Division
Ogden Air Logistics Center

	Front Cover
	Table of Contents
	Team Software Process
	TSP Can Be the Building Blocks for CMMI
	Microsoft’s IT Organization Uses PSP/TSP to Achieve Engineering Excellence
	Experiences With the TSP Technology Insertion
	Personal Earned Value:Why Projects Using the Team Software ProcessConsistently Meet Schedule Commitments
	A TSP Software Maintenance Life Cycle

	Open Forum
	Why Big Software Projects Fail:The 12 Key Questions

	From the Sponsor
	From the Publisher
	Coming Events
	Web Sites
	SSTC 2005 Conference
	BackTalk
	Back Cover

